[[under construction; unicode Greek needed]]
search/replace [lower case beta for Greek]:
fonts - <1 greek = <gk>, <2 italics = <it>, <s superscript = <sup> [done]
<it> 0 = <it>O [done]
insert space between initial colon (:) and following <gk> [done]
substitute unicode Gk for Beta, watching for differences in text, ambiguities of code (Z = C or Z)
put Greek (entire file) into Palatino linotype font [done]
make ch.v designations consistent and explicit
Z = c (ksi), also z (zeta)! [recheck]
B = b (beta)[done]
F = f (phi)[done]
Q = q (theta) [done]
X = x (chi) [done]
Y = y (psi) [done]
v = n [done]
<gk>ecoldos</gk> B M
<it>O'</it><sup>-58</sup>
<sup>135</sup>
<it>C`</it><sup>-78</sup>
<sup>131</sup>-54<sup>c</sup>-126<sup>mg</sup>
<sup>1</sup>-414`-422
<it>b</it><sup>-19</sup>
56-129 628 <it</sup></it><sup>-30</sup>
<it>t</it>
318` <it>z</it><sup>-122</sup> 130 424 509 646
<gk>biblion ecodos</gk> 319<sup>txt</sup>
<gk>ecodos b</gk> 55
<gk>ecodos aiguptou</gk> A
<gk>h ecodos (+ biblion deuteron ecodos<sup>c</sup>)</gk> 131
<gk>ecodos biblion b</gk> 19
<gk>ecodos biblion deuteron</gk> 44`-125 <it>x</it>
<gk>biblion deuteron ecodos</gk> 107`
<gk>biblion ths ecodou</gk> 18
<gk>biblion deuteron h ecodos</gk> 126<sup>mg2</sup> 799
: <gk>biblion b</gk> h ecodos</gk> 76
: <gk>biblos deuteros uparxw ths ecodou</gk> 58
: <gk>arxh ths ecodou (ecwdou</gk> 664) 78 53`-246 527
: <gk>arxh tou b bibliou- ecodos</gk> 75
: <gk>ecodos- arxh tou b bibliou</gk> 458
: <gk>ecodos tou ihl ec eguptou</gk> 30
: <gk>ecodos twn uiwn ihl ec aiguptou b</gk> 121
: <gk>twn mwsews deuteros ecodos logos ecodos</gk> 59
: <gk>ecodos ec aiguptou twn uiwn ihl suggrafh mwsh</gk> 313 319<sup>mg</sup>
: <gk>ecodos aiguptou twn uiwn israhl sugrafh mwsh</gk> 25
: <gk>ecodos ec aiguptou twn uiwn israhl suggrafh mwusews anou tou Qu kai profhtou</gk> 52`-761
:inscriptio deest in 135 54*-l26<sup>txt</sup> 122
1.1
Ταῦτα]
+ <gk>de</gk> 53' <sup>Lat</sup>Aug C D XVI
40 = <9M>9
τὰ
ὀνόματα
τῶν
υἱῶν
Ισραηλ
τῶν
εἰσπεπορευμένων]
<gk>-reuomenwn</gk> 54 107 628(vid);
: εἰσπορευομένων 0'<sup>-29</sup><sup>64`</sup>
<sup>135</sup>
C'<sup>-25</sup><sup>54</sup>
<sup>73</sup> <sup>414</sup>
<sup>422</sup>
<it>b</it> d-lO7 53`-56*-246 75` 30`-343 84-134 x 121-392
68`-128 18 59 319 424 509 799 Syh (sed hab Compl)
: εἰσπορευομένον 30
εἰς
Αἴγυπτον
ἅμα
Ιακωβ
|τῷ πατρὶ αὐτῶν] sub V Syh = <9M>9
|αὐτῶν 1(0)] autou 799
ἕκαστος
|πανοικίᾳ] panoiki</gk> (-<gk>panoikh</gk> 55
: -<gk>panoikei</gk> 72 75-628 121 59)
<it>b</it> 1 5-72-135-376 -707 126-761 19`
d<sup>-107</sup> <sup>f-56*</sup> n 121-527 18
55 59 799
: <gk>parolikia</gk> Ald
|αὐτῶν 2(0)] autw 799
: autou</gk> 72 Co = <9M>9
εἰσῆλϑον] [[check & redo var info]]
<gk>ei)sh=lqe(n)</gk> 78 84 Sa
: ei)shl<gk><sup>q</gk></sup> 458
: εἰσήλϑοσαν (<gk>ei)sh=lqwsan</gk> 376 -707* 246 343 59
130* 799) A <it>b</it> O' <sup>-64txt*</sup>
<sup>426</sup> <sup>708</sup> D 628 s x y z 55
59 76` 130 509 646` = Compl Ra
: </gk> Bo<sup>B</sup>
1.2
: <gk>R(OUBIN</gk>
426 550` 107* 56-129<sup>c</sup> 321 74`-370 527 630 76;
: <gk>R(OUBHM</gk> 58 -64 458 68;
: <gk>R(OUBIM</gk> 72 <gk>C'<sup>-77</sup> <sup>126</sup> <sup>550`</sup> 44-107<sup>c</sup>-125-610 53`-246 84 <it>x</it> 128 59 646`;
: <gk>R(OUBEIM</gk> 381` 77-126 106 730 46;
: <gk>ROBEL</gk> Aeth;
: <gk>RUBIL</gk> Arab Syh<sup>L</sup>
| cumew(n] sumaiwn</gk> 75
: <gk</sup>umswn</gk> <gk</gk>9*
| Leui)] leuei</gk> <it>b</it> 15' Sa
: <gk>leuh 68'-</gk>120'
: <gk>lebi 59
| )Iou/das]</gk> pr < 1kai</gk> 426 Aeth Arab = <9M;>9 <gk>ioluda</gk> A 29-376' 107* 458 30-127-343' 134 318 55 509 Arm
1.3
<gk>)Issaxa/r]</gk>
pr <it>et</it> Aeth Arab = Sam
: <gk>isaxar</gk> 707 57-126-422 <gk>dfn-7 5</gk> 321 <gk>t-84</gk> <gk>x</gk> 1 <gk>8</gk> 55 59 646 Latcod 1 00 Arm Sa4 = Compl
: <gk>izachar</gk> Bo
| Zaboulw(n]</gk> pr <it>et</it> Aeth = Sam
:-<gk>bollwn</gk> 527
: <gk>ziboulo(/n</gk> Ach
| kai\ beniamin]</gk> > <gk>kai</gk> 376 <it>C</it> <it>d</it> 75 <it>x</it> 527 68 646' = Sixt: > 58-135* 126 Aeth<sup>C</sup> Bo Sa<sup>4</sup>
| kai/] ^(4) 1(0) 72
| Ben iami)n]</gk> -mein A <it>b</it> <gk>M</gk> 29'-64*-376-381' 1 <gk</gk>8'-</gk>537 56*-246-664* 628 <it</sup></it><sup>-321</sup> <sup>730</sup> 12 1-392 407 130 509 Ach Sa
:-<gk>mhn 82</gk> 75'
: <gk>Bainiamein</gk> 15
???
4
init -- (5)
h)=n]</gk> sup ras A(vid)
| init -- <gk>Nefqali ] post'Ash/r</gk> tr Sa<sup>4</sup>
| Da/n]</gk> pr <it>et</it> Aeth Arab
: <gk>DAM</gk> 19
| om <gk>kai 1(0) <it>d</it> <it>x</it> 527 646` Bo
| <gk>Nefqali</gk> A 707 129 321 318` Syh = Compl Sixt]
: <gk>NEFQALEI</gk> <it>b</it> <gk>M</gk> 15 64*-426 73 30-85-127-343` 55*;
: <gk>NEFQALIM</gk> 56 <it>t</it><sup>-46</sup> 128` <sup>Lat</sup>cod 100 Arm Bo;
: <gk>NEPTH</gk> La
: <gk>NEFQALHM</gk> 246 18;
: <gk>NEFQALEIM</gk> rell
| Ga\d kai ]</gk> om <gk>kai</gk> 44
: <gk>> 799
| Ga/d]</gk> pr <it>et</it> Aeth Arab
: <gk>gaq</gk> 128
: <gk>gar 19
|'Ash/r] <gk>ASSHR</gk> M 730 619 799 Bo<sup>A</sup>;
<3ai.e=r>3 Ach;
<gk>ASEIR</gk> 75;
+ <gk>KAI</gk> 58 126 Aeth<sup>C</sup> Bo Sa<sup>4</sup>
+ <gk>BENIAMIN</gk> 126 Aeth<sup>C</sup> Bo Sa<sup>4</sup>
+ <gk>BENIAMEIN</gk> 58 Sa
5
init -- <gk>Ai)gu/ptw|]</gk>
om de/ 458
:om <gk>h)=n</gk> 59
:om <gk>e)n</gk> 73
:ad fin tr <it>)O-</it>-15 Arm Syh ~ <9M>9
| hwshf</gk> 30*
| pa=sai yuxai)]</gk> +< <gk>AI</gk> Phil II 307
: <gk>ai yuxai pasai</gk> 52`-126-313`
: <gk>pasai ai yuxai</gk> (+ <it>ai</it> 82 73-413 628 84) 64*-72-82-381` <it>C`-</it> 25-54-414`-422 <it> b</it> <it> d</it> 246 <it> n</it> <it> t</it> <it> x</it> 527 128 509 799 Bo (sed hab Compl) = Ald
| e)c )Iakw/b]</gk> +> (* 64 Syh
:+ <gk>twn</gk> 376 Syh) <gk>ecelqontwn (ecelqo[ 64
:-<gk>qwnt.</gk> 376) <it>)O</it><sup>-72</sup>-15-64<sup>mg</sup> Syh = <9M>9;
+> <gk>ai ecelqousai (</gk> 3l8<sup>txt</sup>) 56<sup>txt</sup> 318 Arm Co = Compl;
+<gk>ai ecelqousai</gk> 72;
+<gk>ai eiselqousai meta iakwb</gk> (> <gk>m. iak.</gk> 53`)
+<gk>eis aigupton <it>f</it><sup>-56txt</sup>: cf Gen 46:27
|</gk> <gk>pe/nte kai) e)bdomh/kolnta] ebdomh/konta pente</gk> 126 <it> d</it><sup>-106</sup> <it>f</it><sup>-56txt</sup> 458;
< 1pe/nte kai</gk> sub V -Syh;
> <gk>pe/nte kai</gk> Aeth<sup>c</sup> = <9M>9
<gk>+ yuxai</gk> 426 Arab Arm Syh = <9M>9
6
<gk>)Iwsh/f]
+ en airuptw</gk> 376
|</gk> om <gk>pa/ntes</gk> 125
| genea/] suggeneia (sugen;</gk> 1 5
:-<gk>nia</gk> 376) 15-376
| e)keinh] autolu</gk> 130
7
<gk>ui)oi/
-- xu ( dai=oi ]</gk> pr <gk>oi</gk> 458 84
:sup ras A
| hu)ch/qhsa n] hu)ch/nq.
:(hucu nq.</gk> 106-125` 619) 82-376-708 52`-761 <it>d</it> 53`-246 <it>n</it><sup>-628</sup> 321 370 619 59 799
| kai\ e)plhqu/nqhsan]</gk> post <gk>e)ge/nonto</gk> tr <it>)O</it><sup>-376</sup>-15 Syh == <9M>9
+ h genea ekeinh</gk> 53`: ex .6
|<gk>e)plhq. kai) xud
:e)ge/n;] peioraverunt multiplicabantur</gk> Arm
| eginonto 799
| katisxuon (-xion</gk> 321) <it>b</it> 72-426-707 73-413 <it> b</it> <it> f</it><sup>-56*</sup> <it> n</it><sup>-628</sup> <it</sup></it> 55 646 Cyr <it>Gl</it> 388]
katisxusan</gk> rell
| om <gk</sup>fo/dra</gk> 2(0) 129 <it>n</it><sup>-75</sup> 619 68 Cyr <it>Gl</it> 388 <sup>Lat</sup>cod 100 Ach Arm Sa (sed hab Ald)
| e)plh/qunen -- fin] <gk>et compleuerunt terram ualenter <sup>Lat</sup>cod 100
> 56<sup>c</sup>-129
| e)plh/qunen]</gk> pr <Lquia>L Arm;
-<gk>qunqh</gk> 53`;
<gk>eplh<sup>q</sup></gk> 56(*)
| de/] <L enim>L Ruf <it>Ex</it> I 4
:> Arm
au)tou/s] <gk>autois</gk> 376<sup>c</sup> 53`
: <gk>auths</gk> 376*
:> Bo<sup>A<sup>txt</sup></sup>
8
<gk>a)ne/th
de/ ] kai anesth</gk> 125
| e)p' Ai)/gupton] <gk>eis aigupton</gk> 246
: <gk>en aiguptw</gk> 509 <sup>Lat</sup>Ruf <it>Ex</it> I 5
> 82 44 75 Arm
| h)/|dei] <gk>eidh</gk> 55 319
: <gk>erinwske</gk> 75
9
<gk>eipen
de/] kai eipen</gk> <it>b</it>
<sup>Lat</sup>cod
100 Ruf <it>Ex</it> I 5 Bo
| e)/qnei] genei </gk> 64<sup>mg</sup> <it>b</it> 509 Cyr <it>Ad</it> 185<sup>Pv</sup> Ach Sa (sed hab Compl)
| au/tou=] <gk>autw</gk> 376
> A Aeth<sup>-c</sup>
| ge/nos]</gk> eqnos A M<sup>txt</sup> <it>)O</it>'<sup>-15</sup> <it>C</it>' <it>b</it> <it>d</it> <it>f</it> <it</sup></it> <it>t</it> <it>x</it> <it>y</it> 68` -120` 18 55 59 76` 130 509 646 Cyr <it>Ad</it> 185<sup>PR</sup> <sup>Lat</sup>GregIl <it>Tr</it> 7 Ach Aeth Arm(vid) Sa Syh<sup>L<sup>txt</sup></sup> <sup>T</sup>: cf <9M>9
+ twn ebraiwn 458
| <gk>tw=n ui(w=n *)Israh/l] <gk>twn</gk> (> 422) <gk>israhlitwn C'<sup>-126</sup>
+<gk>touto</gk> 126
| me/ga] + pollu</gk> <it>b</it>
|<gk>plh=qos] <L est vi>L Arm
| <gk>isxu/ei]</gk> pr <gk>ouk</gk> 527
<gk>isxui</gk> 82 44 121 55* 319 Cyr <it>Ad</it> 185<sup>R</sup>
<gk>isxusei</gk> 135
| h/ma=s] <gk>hmwn</gk> 72 126 664* 458 799
10
<gk>ou)=n]</gk>
<gk>kai</gk> 376
<gk><it>C</it>'<sup>-126</sup>
30`-321 59 424 646 <sup>Lat</sup>cod 100 ==
Tar<sup>P</sup>
inc 76
> A 29-135-426 126 56* 628 85-127-343` <it>x</it> 121` 130 319 Cyr <it>Ad</it> 185 Ach Aeth Bo<sup>A</sup> Sa == <9M>9 Sam Tar<sup>O</sup>
| <gk>katasofisw/meqa] : <gk>-someqa</gk> (-<gk</sup>ofhs.</gk> 319) 82 25-54-313`-615 44` 53-246 628 85-344*-730 392 319 509
: <gk</sup>ofisomeqa</gk> 376
: <L depotentemus>L <sup>Lat</sup>cod 100
| au)tou/s] <gk>en autois</gk> 707
| plhqunqh=|] plhqunwn <it>x</it>
:-qunqeih</gk> (-<gk>quei</gk> 319) 246 76`
:-<gk>qwsi(n)</gk> (-<gk>qhnqwsi</gk> 126) <it>)O</it><sup>-376</sup> 126 <it>b</it> <it>d</it> <it>n</it><sup>-628</sup> <it>t</it></gk> <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7 Ruf <it>Ex</it> I 5 Aeth Arm Co Syh<sup>txt</sup> == Tar
<L multiplicetur>L in graece Syh<sup>mg</sup>
| kai/ 1(0) +erit</gk> <sup>Lat</sup>cod 100 == <9M>9
| h(ni/ka a)/n]</gk> <gk>h</gk> 126
| <gk>a)/n</gk> <it>b</it> 58-82-376 414` <it>b</it> 125 <it>f</it><sup>-56*</sup> <it>n</it><sup>-628</sup> 370* <it>x</it> <it>z</it> 130]
> 72-707
+<gk>ean</gk> Cyr <it>Ad</it> 185 rell
| <gk>hmin</gk> <gk</sup>umbh</gk> 68
| <gk>h/mi=n]</gk> <gk>umin</gk> 53`
: <gk>hmas</gk> 75
> 246 458* Cyr <it>Ad</it> 185<sup>pv</sup>
post <gk>po/lemos</gk> tr <it>C</it>' 53` 30` 424 646
| <gk>prosteqh/soltai</gk> <gk>kai/]</gk> pr <gk>kai</gk> 76` <sup>Lat</sup>cod 100 == <9M>9
tr Pel <it>Indur</it> 23
om <gk>kai/</gk> 458 <sup>Lat</sup>GregIl <it>Tr</it> 7
|<gk>ou(=toi] autoi</gk> 15-426* <it>b</it> Arm Syh<sup>L<sup>txt</sup></sup> <sup>T</sup>: cf <9M>9
| pro\s tou\s u(penanti/ous] tois upenantiois</gk> 72
: <gk>L cum eis>L GregIl <it>Tr</it> 7
om <gk>tou/s</gk> 376 53
| <gk>polemhsantes</gk> 413 44
| <gk>h(ma=s]</gk> <gk>umas</gk> 664*
| <gk>e)celeu/sontai] ekporeusontai 29
| <gk>gh=s] + hmwn</gk> (<gk>um. 19*)</gk> <it>b</it> 628 59
<sup>Lat</sup>GregIl <it>Tr</it> 7 Pel <it>Indur</it> 23 Ruf <it>Ex</it> I 5 Aeth<sup>-CR</sup> Bo (sed hab Compl)
11
<gk>e)pe/thsen
F<sup>b</sup>] -san F 19* 628 321 318 128 76`
Aeth<sup>C</sup>
Bo Syh == <9M>9
: <gk>esthsan</gk> 72
| <gk>epistantas</gk> 72*
| tw=n]</gk> pr <gk>epi</gk> 68
| <gk>kakw/swsin F<sup>b</sup>] -sousin</gk> A F 29*-58-376 500 19 125 53`-129 <it>n</it><sup>-628</sup> 730 619 121 55 319 799
| <gk>au)tou/s> 1 == Sam Tar] <gk>autois</gk> 376 <it>b</it><sup>-537</sup> 44 129 <it>z</it><sup>-630</sup> 646 Cyr <it>Ad</it> 185<sup>P</sup> 308<sup>p</sup> (sed hab <it>Gl</it> 388 Ald Compl)
<gk>auton</gk> 71*(c pr m) == <9M>9
| <gk>e)n toi=s e)/rgois] <L in operibus suis>L <sup>Lat</sup>cod 100 == <9M>9
| <gk>w)|kodo/mhsan</gk> == Sam Tar]
:-<gk</sup>en</gk> 246 == <9M>9
| <gk>o)xura/s] <gk>isxuras</gk> 646
post <gk>*faraw/</gk> tr Ach
| <gk>th/n te *piqw/m]
: <gk>thn pepeiqw</gk> 56<sup>mg</sup>
: <gk>thn te feidwm</gk> 56<sup>txt</sup>
: <gk>phythonam</gk> <sup>Lat</sup>cod 100
| <gk>*piqw/m</gk> A 130 Sa(vid) Syh<sup>T<sup>mg</sup></sup> == <9M>9 Tar<sup>O</sup>]
: <gk>peiqwm</gk> M 376<sup>c</sup> <sup>pr</sup> <sup>m</sup>-707<sup>c</sup> 77 <it</sup></it><sup>-730</sup> Ach
: <gk>piqwn</gk> 75 == Sam
: <gk>pitqwn</gk> Cyr <it>Ad</it> 185<sup>R</sup>
: <gk>peiqwn</gk> 82 Phil III 221<sup>ap</sup> Cyr <it>Ad</it> 185<sup>P</sup>
: <?petho-m>? Bo
: <gk>pytwm</gk> Syh<sup>L</sup> <sup>Tt<sup>xt</sup></sup>
: <gk>fiqwm</gk> 15-29 71 55* 76` Eus III 1.168 == Compl ^^
: <gk>fiqom</gk> 318
: <gk>feiqwm</gk> 376*
: <gk>fiqwn</gk> 125 392
: <gk>feiqwn</gk> 799;
: <gk>biqwm</gk> 619
: <gk>phidon</gk> Arm;
: <gk>piqwf</gk> 64`
: <gk>peiqwf</gk> <it>C</it>'<sup>-54</sup> <sup>77</sup> <sup>78</sup> <sup>126</sup>
: <gk>peiqof</gk> 54;
: <gk>piqwq</gk> F
: <gk>fiqwq</gk> Fa <it>d</it><sup>-125</sup> <it>t</it><sup>-46</sup>
: <gk>fiswn</gk> 509
: <gk>biqwr</gk> 59
: <gk>fimwq</gk> 135
: <gk>plinqon</gk> 72
: <gk>plh<sup>q</sup></gk> 458
: <gk>piqw</gk> 381-426 <it>b</it> 246 128` 55<sup>c</sup> Cyr <it>Ad</it> 185<sup>V</sup>^^
: <gk>poiqw</gk> 53`
: <gk>puqw</gk> Phil II 12<sup>U</sup>
: <gk>(...]qw(..]</gk> 121*
: <gk>qw</gk> 121<sup>c</sup>
: <gk>peiqw</gk> Phil II l2<sup>te</sup> III 221<sup>te</sup> Cyr <it>Gl</it> 388 Theoph 244 rell
| kai 3(0)]</gk> pr ^ Syh<sup>T</sup>
:sub ^ Syh<sup>L</sup> ^^
:> 58 527 <sup>Lat</sup>PsAmbr <it>Mans</it> 12 Ach
| *Ramessh/]</gk> pr <gk>thn <it>)O</it><sup>-72</it>-1 5 126 527 76: cf <9M>9
: <gk>ramesh</gk> F M <it>C</it>-25-78-126 19` 106-107` <it>n</it> 127 370* 318-527 59 76 130 799 Phil III 221<sup>ap</sup> Arm<sup>te</sup> (sed hab Compl)
: <gk>ramesi</gk> 125
: <gk>rem. </gk> 313
[[??: <gk>ramsi-</gk> Arm<sup>ap</sup>
:-<gk</sup>shn</gk> 376*-707 Phil III 221<sup>ap</sup>
: <gk>rameshn</gk> Phil iii 221<sup>ap</sup>
: <gk>ramessem</gk> <sup>Lat</sup>cod 100 PsAmbr <it>Mans</it> 12
| <gk> kai/4(O) -->fin] sub V Syh
: </gk> 53`-56<sup>c</sup>-246 == <9M>9
om <gk>kai\</gk>
<gk>*o)/n</gk> 707
|<gk>*o)/n]</gk> pr <gk>thn</gk> 527 Phil III 221 == Ald
: <gk>wr</gk> <it>b</it> (sed hab Compl)
:> 58|
<gk>h(/</gk> : <gk>htis</gk> Theoph 244
> 1 646
| po/lis] polews <it>x</it>
:po<sup>l</sup></gk> 126
l2
om <gk>kaqo/ti
-- isxuon</gk> 14
| <gk>kaqo/ti] kaqo</gk> 527
: <gk>osw</gk> Or IV 84 <it>Cels</it> Vll 26
| om de/ Bo<sup>B</sup>
|<gk>au)tou/s</gk> > Ach
:post <gk>e)tapei/noun</gk> tr 426 Arm Syh == <9M>9
| <gk>etapeinounto</gk> <it>x</it>
| tosOu/tW|</gk> Tht <it>Ex</it> lOO<sup>ap</sup>]
:-<gk>to</gk> 15-29<sup>c</sup>-64` 77<sup>c</sup> 664 628 392128* 76` 646 Tht <it>Ex</it> lOO<sup>ap</sup>
: <gk>kata tosouton</gk> 318
: <gk>tosouton</gk> 82`-376-381<sup>c</sup>-618 77*-550` <it>n</it><sup>-628</it> 619 527 799 Tht <it>Ex</it> 1OO<sup>te</sup>
: <gk>tosounto</gk> 53
| <gk>e)gi/nonto</gk> <gk>egen.</gk> 707 44 53` <it>n</it><sup>-628</sup> 321 59
: <gk>egign.</gk> 68` -120` == Sixt
| <gk>kai) isxuon</gk> F 426 <it</sup></it><sup>-321mg</sup> 121` 59 509 Tht <it>Ex</it> lOO<sup>ap</sup> Aeth Bo Syh
: <gk>kai katisxuon sfodra sfodra</gk> Or IV 84 <it>Cels</it> VII 26: ex .7 > 135;
+<gk</sup>fodra</gk> A*(vid) 29 16 <it>b</it> 44 53` <it>n</it> 619 Tht <it>Ex</it> lOO<sup>ap</sup> <sup>Lat</sup>cod 100 Cyp <gk>fortun</gk> 10 Ruf <it>Ios</it> IX 10 Ach Arm
+<gk</sup>fodra sfoldra</gk> Tht <it>Ex</it> lOO<sup>te</sup> rell == Ra
| <gk>oi) Ai)gu/ptioi</gk> subV Syh == <9M>9 Sam
| <gk>a)po/ --</gk> fin]
: <gk>tous uious ihl <it>)O</it>-15-64<sup>mg</sup> <it>n</it><sup>-628</sup> 30` -85`<sup>mg</sup>-127<sup>mg</sup>-343 -344<sup>mg</sup> 318 <sup>Lat</sup>cod 100 Ruf <it>Gen</it> XVI 1 Aeth Arm
| <gk>tw=n]
</gk> pr <gk>proswpou</gk> F<sup>b</sup> Bo == <9M>9
: <gk>pantwn1 82
13
comma] om
init --<gk>)I)srah/l</gk> 376: homoiot; > Ach Sa
| <gk>kateduna/steuon --(14)
<gk>Zwh/n</gk>] <it>in odio eis adducebant uitam et cum ui potestatem exercebant</gk> <sup>Lat</sup>cod 100
| kateduna/steuon]
:-steusan F<sup>b</sup>
:kated[;..</gk> 64<sup>mg</sup>
| <gk>oi) Ai)gu/ptioi] 72 126 75,;
<gk>post)I)srah/l</gk> tr <it>f</it><sup>-129</sup>
| tou\s ui(ou\s) I)srah/l] tois uiolis ihl</gk> 127-343`
:twn uiwn ihl 19,;</gk>
<gk>autous</gk> 72 126 44 7
|</gk> om <gk>bia|</gk> <it>b</it> Or X 207 (sed hab Compl)
14
<gk>katwdu/nwn]
-dunoun (-nou</gk> 107`) <it>d</it>
<it>t</it> 76
:-<gk>dunan 799
:katetapeinwn 59
+ <gk>epoioun</gk> 619
| au/tw=n / th=n Zwh=n] autous</gk> 53`
:tr 426 Arm Syh == <9M>9
| e)/rgois 1(0)]</gk> homoiot 2(0) 422
| <gk</sup>klhroi=s] + ois epoioun</gk> 53`
: <gk>+ epoioun</gk> 537
| tw=i|]</gk> pr <gk>en</gk> 129 == Compl <9M>9
pr <gk>kai</gk> 52-126
:+ <gk>te</gk> <it>b</it> 53` (non hab Compl)
| ph=lw|</gk>]
:pilw 246*
:pulw 130
| kai/ 3(0)] <it>in</it> <sup>Lat</sup>cod 100
| <gk>e)n toi=s pedi/ois</gk>] : <gk>en tw pediw</gk> 53` Aeth == <9M>9
<gk>pollois</gk> <it>x</it> > <gk>toi=s</gk> 628
| kata/ -- w(=n] <it>et in omni opere quod</it> Aeth
| kata/] kai</gk> 53`
| > <gk>pa/nta</gk> Ach
|</gk> > <gk>ta/</gk> 72
| e)/rga] + (^ 64 Arm<sup>mss</sup> Syh) <gk>autwn</gk> <it>)O</it><sup>-58</sup>-15-64<sup>mg</sup> Arm Syh == <9M>9 Sam Tar <sup>O</sup> ^^
| <gk>w(=n katedoulou=nto]</gk> <gk>en ois katedunasteuon</gk> 30` 85`<sup>txt</sup> l27<sup>txt</sup>-343-344<sup>txt</sup>
| w(=n] en ois 58 <it>d</it> <it>n</it><sup>-628</sup> <it>t</it> <sup>Lat</sup>cod 100 Syh; <it>a</it> 53` 18
| katedoulou=nto] -dolountw</gk> 376
:-<gk>loun</gk> 72
:-<gk>lwn</gk> 129
| meta/] eis tas x </gk> fin] <gk>+ kaqoti de autous etapeinoun tosoutw pleious eginonto kai isxuon sfodra sfodra</gk> 14: ex .12
15
<gk>kai\
ei)=pen] eipe de 799
| o ( -- (17) e)cwolgo/[noun]</gk> absc 370
| tw=n *Ai)guti/wn</gk> Ach] <gk>aiguptou</gk> F <sup>Lat</sup>cod 100 Sa;> 29
| <gk>tas</gk> <gk>ebraias</gk> Fb
| th=| mia=|]</gk> post <gk>onoma 1(0) tr 126: cf <9M>9
| > <gk>au/tw=n</gk> 126 Aeth Arm == <9M>9 Sam Tar <sup>O</sup>
|<gk>h(=</gk>] <gk>w</gk> 125;
: <gk> hn</gk> Compl; > F M 29`-135-376` <it>C'</it> 129 <it</sup></it> 18 59 76` 509 646` Ach Aeth Sa Syh == Sixt
| <gk>o)/noma</gk>1(0)] <gk>onomati 29 414-551*; > 319 799
| <gk>*sepfwra/</gk> Syh<sup>T<sup>mg</sup></sup>]
: <gk>fora</gk> 78-550` 19-314 <it>d</it> 53` 628 84 <it>x</it> <it>y</it><sup>-121</sup> 68-120`-122<sup>c</sup> 799
: <gk</sup>efwra</gk> 129 <sup>Lat</sup>Ruf <it>Ex</it> II 1 Ach Arm<sup>te</sup> == Compl
: <gk>.spwr`</gk> Syh<sup>L</sup> <sup>T<sup>txt</sup></sup>
: <gk</sup>effo-ra</gk> Sa
: <gk</sup>emf</gk><gk></gk>. 54
: <gk</sup>emfora</gk> 458
: <gk</sup>empfora</gk> 319
: <gk</sup>epforra</gk> 75
: <gk</sup>epfwran</gk> 59
: <gk</sup>edphora</gk> <sup>Lat</sup>cod 100
|<gk>kai\</gk> <gk>to/</gk>] <gk>to de</gk> 527
> <gk>to/</gk> 135 126 125 246 628 799
|<gk>th</gk> <gk>deutera</gk> 72 126 125 628 68`-120`
16
<gk>kai
eipen]</gk> > 75
+<gk>autais <it>b</it> <it>f</it><sup>-56*</sup> 527 <sup>Lat</sup>cod 100 Aeth Arab == Ald
| o)/tan]</gk> <gk>ote an</gk> 799
| maieuhsqe</gk> <it>z</it> (sed hab Ald)
| : <gk>tais</gk> 125 59
| : <gk>ebraiais</gk> 59
:(ebraias</gk> 125
|<gk>w)=sin] <gk>eisi</gk> 381` == Ald
: <gk>eni</gk> 68`-120`
| tw=i] to</gk> 15-58`-135-376*-707-<it>oI</it> 14`- 25-54-126-131-500-550` <it>b</it> <it>d</it> <it>f</it><sup>-l29<sup>c</sup> <sup>pr</sup> <sup>m</sup></sup> <it>n</it> 85-343-344* <it>t</it><sup>(-370)</sup> <it>x</it> <it>y</it> <it>z</it><sup>-128</sup> 18 55 59 76` 509 799 Cyr <it>Ad</it> 308<sup>PV</sup>
| a)/rsen] arren 82 527 :post h)=| tr <it>b</it> (sed hab Comp)
|<gk>h)=|</gk>] <gk>hn</gk> 615*(vid) 619
: > 458 Aeth<sup>R</sup>
| a/poktei)nate]
: <gk>apokteinete</gk> 527
| au)to/</gk> 1(0) ] auton</gk> 53-246<sup>c</sup>
|</gk> > <gk>de)</gk> 458
| peripoieisqe] -poieite</gk> 56*
:-<gk>poihsasqe (-sqai</gk> 56` 458) <it>b</it><sup>19</sup> <it>f</it><sup>-56*</sup> 458
|</gk> om <gk>au)to/ 2(0) <sup>Lat</sup>Ruf <it>Ex</it> II 1 Arm
17
<gk>tw
Qew</gk> 30
| kai) 1(0)] + ras 5--6 litt 458
| kaqo/ti -- Ai)gu/ptou] kata to rhmatou faraw 799
| kaqo/ti] kaqws</gk> 72-<it>oI</it><sup>-64mg</sup> <it>C'</it><sup>-551</sup> 44 59 646
: <gk>kaqa</gk> 551 125 509 Cyr <it>Ad</it> 308<sup>RV</sup>
| sune/tacen] <gk>proset.</gk> 72
: <gk>eneteilato</gk> 29<sup>c</sup> <sup>pr</sup> <sup>m</sup>; > 29*
| au)tai=s] autous</gk> 730 > 376 53` 121 18
| Ai)gu/ptou] homoiot. (18) 54 19
| kai)2(0)] homoiot. (18) 1(0) 458
| a)/rsena] <gk>arrena</gk> 72-82 84 527 509 646 == Compl
: <gk>arsenika</gk> 707 Cyr <it>Ad</it> 308<sup>RV</sup>
l8
<gk>ta\s
mai)as] tais maiais 19 125 == <9M>9;+
<it>hebraeorum</it> Sa
| au/tais] autois 799* > 552
|> <gk>oti</gk> 628
| e)poih/sate -- kai)2(O) ] ouk epoihsate to prostagma mou kai 72 > 126
| e)poih/sate] epoieite</gk> 56*
| e)cwogone=ite] -neisate</gk> 58<sup>c</sup> <sup>Lat</sup>cod 100 Arm
: <gk>ecwogonoun</gk> 392
: <gk>cwogoneite</gk> 72 <it>C'</it><sup>-78</sup> 44 (|) 53` 84 619 76`
: <gk>cwogwneite</gk> 664
: <gk>cwogoneitai</gk> 319
: <gk>ecwopoieite</gk> 15
| a)/rsena ] arrena 82 628 84 527
: <gk>arsenika</gk> 707
: <gk>brefh</gk> 72
19
<gk>eipan]
eipon F<sup>b</sup> 15-72-376-381` 422
<it>b</it> <it>d</it>
246 <it>n</it> <it>t</it> 527 128 76 (sed
habCompl) ^^
: <gk>eipe(n)</gk> 71 59*
| > <gk>ai)</gk> 1(0) 1l8*(c pr m)
| maiai] gunaikes</gk> 509
| tw=| faraw/] tw basilei</gk> <it>b</it> (sed hab Compl) > 125
| ou/x] ouk 82
| gunaikes] pr <gk>ai</gk> 29<sup>c</sup>-72-376 <it>C'</it><sup>-413</sup> <it>b</it> 85` 84 18 55<sup>c</sup> 59 76` 509 646` Co^^ > 413
| Ai)gu/ptou] ai aiguptiai</gk> 72 <it>b</it> 730 Phil II 295<sup>ap</sup> == <9M>9
:tiai F<sup>b</sup> 58-</gk>64<sup>mg</sup>-426 57* <it>n</it> 30-321<sup>mg</sup> Phil II 295<sup>te</sup> Arm Syh == Compl ^^
(-tioi</gk> 458)
| ai) Ebrai=ai]</gk> pr <gk>tiktousi 19
:pr outw(s) kai 72 <it>C</it> 44 <sup>Lat</sup>cod 100
:pr outw(s) kai ai 57 53` 664
+(e 664)
:gunaikes 57 53`
(ginekes</gk> 664)
: <gk>ei</gk> 458
: <gk>ebraioi</gk> 458
: <it>mulieres hebraeorum</it> Bo
:> <gk>ai)</gk> 376 319 799
| > <gk>tiktousin ga`r</gk> Aeth
| ti)ktousin] pr <gk>tiktousai</gk> 108
:bis scr 118 -537 Sa
| pri)n h)/] pro tou M 15413 <it>b</it> <it>d</it> 56* 628 85-127-32l<sup>txt</sup>-343` <it>t</it> 18 55 130 509 799 (sed hab Compl)
:> h)/] 707-708 126 Phil II 147 ^^
| ei)selqei=n]</gk> pr <gk>tou</gk> 56<sup>c</sup>-246
: <gk>elqein</gk> 126 19 <it>d</it><sup>-106</sup> 53` 628 <it</sup></it><sup>-321</sup> 59 319
| pros au)ta/s] eis autas</gk> 414` 107`-125 > Phil III 147 Aeth ^^:
contra <9M>9 post <gk>maias</gk> tr 458 == Tar<sup>P</sup>
| autas] autous</gk> 75-458*<sup>vid</sup>
| kai etikton] kai etekon 799
: <it>pariunt</it> Aeth > 53` 75 46 509 Arab
20
> de/ Bo<sup>B</sup>
| e)poiei] <it>fecit</it> Ach Aeth Sa Syh
| o( Qeo/s]</gk> > <gk>o(</gk> Phil I 167<sup>te</sup>; > Chr lX 393
| tas maias (maiais</gk> 126) 72 458 527 Phil I 167
| > <gk>kai/ 1(0) <sup>Lat</sup>cod 100
| e)plh/qunen] -quneto</gk> 628
<gk>eplunq.</gk> 66
:-<gk>qunon</gk> 422 == Sam Tar<sup>P</sup>
+ <it>nalde</it> Arm
| kai) isxuen] kai isxuon 82-426 <it>C'</it><sup>-52`</sup> <sup>126</sup> <sup>761</sup> 125 628 55 646 == <9M>9
: <gk>enisx.</gk> 58`
: <gk>katisx.</gk> 319
: <gk>isxuse(n)</gk> 708 392-527 <it>z</it><sup>-128</sup> 59 Aeth Co
: <gk>enisx. autous</gk> 19 ad fin tr 414`
21
<gk>e)peidh/</gk>
B*(vid)] <gk>epei de</gk> B<sup>c</sup>
64*(vid) <it>C`</it>-25-54-414`-422
664 628 321 Ach Sa
: <gk>epei oun</gk> 52`-313` ^^
: <gk>epeidan</gk> Phil II 311<sup>ap</sup> (sed hab I 113)
: <gk>epei</gk> Did <it>Eccl</it> 342.9 <it>Hiob</it> 146.10 <it>Ps</it> 108.13;
: <gk>dioti</gk> 799;
+ <gk>de</gk> 135 458 121 Aeth <sup>F</sup><sup>G</sup><sup>H</sup><sup>R</sup> Bo<sup>A</sup>
|<gk>ai maiai]</gk> post <gk>Qeo/n</gk> tr 53`-129 Tht <it>Ex</it> lOO<sup>ap</sup> <sup>Lat</sup>Ruf <it>Lev</it> XV 2 (sed hab <it>Ex</it> II 2) Aeth
| to\n Qeo/n] <it>dominum</it> <sup>Lat</sup>cod 100 == Tar
:> 18 Arm<sup>ap</sup>
| om <gk>e)poi/hsan -- fin 125
| e)poihsan</gk> F F<sup>b</sup>] pr (^ Syh) <gk>kai</gk> <it>)O</it>-15-707 130 646 Arm<sup>ap</sup> Syh ^^
:-<gk</sup>en</gk> F<sup>c</sup>(vid) Aeth<sup>C</sup> == Compl <9M>9;
+ <gk>de</gk> 129 458 <it>z</it> 799
| <gk>e(autai=s</gk> F F<sup>b</sup><sup>1</sup>] <gk>autais</gk> F<sup>c</sup><sup>et</sup><sup>b</sup><sup</it></sup> M 82 18 Did <it>Hiob</it> 146.11 Aeth<sup>C</sup>
: <gk>eautas</gk> 19 Phil I ll3<sup>ap</sup> (sed hab II 311);
<gk>ep autais</gk> 118`-537
: <gk>eautois</gk> A
: <gk>en tais</gk> 72*
:> Aeth<sup>-C</sup>
| oi)ki/as] oikiais 618* 85 619
: <gk>oikeiais 82* 610
: <gk>oikeias</gk> 82<sup>c</sup>-135
22
<gk>faraw/]
<it> rex</it> <it>aegypti</it> Arab
| om <gk>panti</gk> Ach
| au\tou] autw</gk> 134
: > 19 85 <sup>Lat</sup>Ruf <it>Ex</it> II 3
| a)/rsen] <gk> arren</gk> 82
: <gk>arshn</gk> 707
: <gk>arsenikon</gk> <it>n</it><sup>-628</sup>
|<gk>o(/</gk>] <gk>w</gk> 71 *(vid)
: <gk>on</gk> 458
| a)/n 58-426 53`-129 628 <it>t</it> Cyr <it>Gl</it> 389]
: <gk>ean</gk> Cyr <it>Ad</it> 308 rell (sed hab Cornpl) == Ra
| <gk>apotexqh</gk> <it>z</it>
| tois h)brai/ois</gk> == Sam Tar] <gk>par</gk> <gk>ebr.</gk> 799
: <gk> tais</gk> <gk> ebraiais</gk> <it> x</it>; sub V Syh == <9M>9
| ei)s] epi <it>f</it><sup>-129</sup>
|</gk> om <gk>to/n</gk> 16
| kai\ pa=n] <gk>pan</gk> <gk> de</gk> 72 527 Bo<sup>B</sup>
|<gk>qhlukon</gk> 509
| cwogonei=te] - neito</gk> 376
:- <gk>neitai</gk> 500-551 <it> n</it><sup>-628</sup> 646*
: <gk>cwoneisate</gk> 628
: <gk>peripoihsasqe</gk> <it>b</it><sup>-19</sup> (sed hab Compl): ex .16
: <gk>peripoieisqe</gk> l9
: <gk>-goneisqai</gk> 319
|<gk>auto/] <gk>auton</gk> 75
: <gk>auta</gk> 458 Co
:> 509 <sup>Lat</sup>cod 100 Aug Loc in hept II 3 Ruf <it>Ex</it> II 3 Aeth Arm Syh == <9M>
Blankenship LXX Ex 2
2 1
<gk>tis] + anhr 799
| th=s fulh=s</gk>] > <gk>ths</gk> 52-77-126
:+ <gk>ths</gk> 64<smg>s 321<smg>s(vid)-343-344<smg>s Phil 111 99<sap>s
| *leui/</gk> 1(0) leuei B* M 15-707 Sa
: <gk>leuh 68`-120`
: <gk>lebi 59
:leieei</gk> Ach; ms:parabl 2(0) <it>C</it><sup>-131mg</sup>
| os] ws</gk> 376
: <it>hic</it> Co
: <gk>abraam kai</gk> Phil III 99<sup>ap</sup>; <gk>kai</gk> <it>b</it> <sup>Lat</sup>cod 100 Aug <it>Loc in hept</it> II 4 == <9M>9 > Aeth<sup>P</sup>
:+ <gk>kai</gk> 426
| e)/laben</gk>]
+ <it</sup>ibi</it> <sup>Lat</sup>Aug <it>Loc in hept</it> II 4 Aeth
:+ <it</sup>ibi uxorem</it> <sup>Lat</sup>cod 100 Ach Arm Sa
:+ <gk>gunaika</gk> F Bo
| tw=n qugaterwn Leui)] gunaika ioxabel</gk> Phil III 99<sup>ap</sup>: cf 6.20
| tw=n qugate)rwn</gk>] pr <gk>apo</gk> 131(<sup>mg</sup>)
:pr <gk>ek</gk> M <it>oI</it> <it>cI1</it> <it>f</it> 628 30` <it>x</it> 527 18 130 319 424 509 646` Cyr <it>Gl</it> 392<sup>Pc</sup> Co == Ald Compl
: <gk>thn qugatera</gk> 106*(c pr m)-107`-125 == <9M>9
|<gk>Leui) 2(0) pr <gk>twn</gk> 64<sup>mg</sup> <it>b</it> 321<sup>mg</sup>-344<sup>mg</sup> Phil III 99<sup>te</sup> (sed hab Compl);
: <gk>leuei</gk> B M 15-707 Ach Sa
: <gk>leuh</gk> 68`-120`
:+ <gk>gunaika</gk> 131(<sup>mg</sup>) Aeth Arab
| kai) e)/sxen au\th/n</gk>] pr <gk>os</gk> <it>b</it> (sed hab Compl)
: <gk>kai eishlqe proS authn</gk> 527
: > B Aeth<sup>CG</sup> Arab Arm Bo == <9M>9
; homoiot
| esxhken</gk> Phil 111 99<sup>ap</sup>
| auth</gk> Phil 111
99<sup>ap</sup>
2
<gk>kai</gk>
1 (0) <gk>h</gk> <it>x</it>
:> 799
| elaben en gastri 106
| e)/laben] esxe 527
| a)/rsen] arren 84 Phil III 99;
| arsena <it>x</it>
| <gk>de</gk> <it>d</it> 126: > 646
<gk>au)to/</gk> 1 (0)] <gk>auton</gk> 500 75 59* 799
> 376 55 <sup>Lat</sup>cod 100
| a)stei=on</gk>] <gk>agaqon</gk> 458^^
+ <gk>on</gk> 29-426 <it>f</it><sup>-129</sup> 75 318 Phil III 99 Syh: cf <9M>9
+<gk>onta</gk> 799
| <gk>e)ske/pasan</gk>] <gk>eneskepasan</gk> 59*
: <gk>eskepesan</gk> 458
: <gk>ekruwan</gk> 121 ^^
| <gk>au\to/</gk> 2 (0) ] <gk>autw</gk> 376 313-615* 19 129. 59<sup>c</sup>
: <gk>auton</gk> <it>n</it><sup>-628</sup>
| <gk>treis mhnas</gk> 426 == <9M>9
| <gk>tris</gk> 458
PROOFED NOT ENTERED
3
<gk>e)pei\
de/</gk> B<sup</sup></sup>]
<gk>epeidh</gk>
761 53-56<sup>c</sup> 392 55 130 509
: <gk>epeidh</gk> (litt <gk>dh</gk> sup ras 129)
<gk>de</gk> A 7.7-550` <it>b</it> 129-246 628 121 646
: <it>et cum iam</it> <sup>Lat</sup>cod 100
: > <gk>de/</gk> 16* <sup>et c2</sup> 106
|<gk>h)du/nanto</gk>] <gk>edunanto</gk> A F M <it>O</it>``<sup>-72 82 381*</sup> 106 <it>t</it> 121` <it>z</it> 509 == Sixt
: <gk>hdunato</gk> (<gk>eidunato</gk> 319) 458 <gk>319</gk> == <9M>9
| <gk>au)to/</gk>] <gk>autw</gk> 376 59<sup>c</sup>
: <gk>auton</gk> 426 118`-537 <sup>Lat</sup>cod 100
:post <gk>e)/ti</gk> tr 30`
:post <gk>kru/ptein</gk> tr A F M 29`-135-376`-<it>oI</it> <it>C</it>`' 19` <it>d</it> <it</sup></it><sup>-30`</sup> <it>t</it> 121` 18 59 76` 130 509 646 Cyr <it>Gl</it> 392 <sup>Lat</sup>Ruf <it>Ex</it> II 4 == <9M>9
: > 53` Arm Syh
| <gk>e)/ti</gk>] > l29<sup>txt</sup> 628 799 Bo
:post <gk>kru/ptein</gk> tr 527
| <gk>krubein</gk> 321<sup>mg</sup> 59
| <gk>e)/laben</gk> F<sup>b</sup>] pr ^ <it>ei</it> _ Syh
: <gk>ebalen</gk> F<sup>a</sup>
:+ <gk>autw</gk>
(<gk>auto</gk> 72 318 122*
: <gk>eauto</gk> 799)
B F <it>O</it><sup>-426</sup> -15` <it>b</it> <it>d</it> 56`-129 370 <it>x</it>
<it>y</it><sup>-121</sup> 68`-120` 55 59 130 799 <sup>Lat</sup>cod 100 Ach Sa == Ra <9M>9
: + <it</sup>ibi</it> (fem) Bo
:+ <gk>de</gk> 7O7(vid) 509
| <gk>au)tou=</gk> ] <gk>autw</gk> A 134 121 509
: > F <it>d</it> 370 <it>x</it> 318 59
| qibin</gk> ]
<gk>qhkhn</gk> 16 == Compl
: + <gk>(^ Arm<sup>mss</sup> Syh) <gk>papurou</gk> 15-376` 527 Arm Syh == Ald ^^
| > <gk>kai/</gk> 1 (0) 68 (sed hab Ald)
| kate)xrisen] <gk> katexrhsen</gk>
(<gk>katexerhsen</gk> 313* vid)
313 108-118*-314 458 30 370* 318-392* 68*1 319
: <gk>exrisen</gk> 126
| > <gk>au)th/n</gk> 1 (0) - <gk>authn</gk> 2 (0) 7O7<sup>txt</sup>
| au)th/n</gk> 1 (0) ] <gk>auth</gk> 72
: <gk>auto</gk> 739 799
| <gk>a\sfaltopi/ssh</gk>]
<gk>asfaltwpissh
(<gk>asfaltwpissei</gk> 55
: <gk>asfaltwpisi</gk> 30)
B<sup>c</sup> <it>O</it><sup>-426</sup>-15-29-64*-135 <it>C</it>`'<sup>-552</sup> <it>b</it> <it>d</it><sup>-125</sup> <it>n</it> 30`-85`-343 <it>t</it> <it>x</it> <it>y</it> <it>z</it> 18 55 59* 76` 646` Phil II 249 Cyr <it>Gl</it> 392
: <gk>asfaltw kai pissh</gk> 552 125 53` 59<sup>c</sup> <sup>Lat</sup>cod 100 Aeth Syh == Compl <9M>9
: <it>bitumine</it> Ruf <it>Ex</it> II 4
: <gk>pissh</gk> 509
| <gk>kai?</gk> 2 (0)] ms:parabl. 3(0) 509
| <gk>e)ne/balen</gk>] <gk>eneballe</gk> 527
: <gk>anebale</it> 59*
: <gk>elabe</gk> 53`
| <gk>to\</gk> <gk>paidi/on</gk> / <gk>ei)s</gk> <gk>au)th/n]
<gk>to</gk> <gk> paidin</gk> <gk> eis</gk> <gk>auto</gk> 458
:tr 426 Arm == <9M>9
| <gk>paidarion</gk> 72
| <gk> eis</gk> <gk>au)th/n</gk>] <gk>en</gk> <gk>th</gk> <gk>qhbh</gk> <it>b</it> (sed hab Comp|)
| <gk> au)th/n</gk> 2 (0)] <gk>autw</gk> 376
: ms:parabl 3 (0) 53`-129
| <gk> au)th/n</gk> 3 (0) ] <gk>en</gk> <gk> authn</gk> <gk>to</gk> <gk> paidion</gk> F<sup>a</sup> <sup>vid</sup>
: <gk>auto</gk> 19
: > 413 <sup>Lat</sup>cod 100 == <9M>9 Sam
| <gk>ei)s</gk> 2 (0) -fin] <it>ad</it>
<it>ripam</it> <it>fiuminis</it> <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7
| <gk>e(/los</gk>] <gk>eleos</gk> 313* 46* 527;
<gk>elin</gk> 799
4
<gk>kai
kateskopeuen] <gk> kateskopeue</gk> <gk>de</gk>
392 <sup>Lat</sup>cod
100 GregIl <it>Tr</it> 7
|katesko/peuen]
: <gk> kateskopeusen</gk><it>O</it><sup>-426</sup>-618 <sup>C</sup>`'<sup>-73</sup> 19 610 53` 628 85-127-321<sup>txt</sup>-343` <it>x</it> 59 646 Cyr <it>Gl</it> 392<sup>P</sup>
: <gk>kateskopeWen</gk> 14
: <gk> kateskopeuon</gk> 509
: <gk>apEskko/peuen</gk> 118` -537 730
: <gk>apeskopeusen</gk>30-321<sup>mg</sup>
: <gk>apeskopesen</gk> 30)
: <gk>kateskol<sup>p</sup> en</gk> 458
| <gk>au)tou=</gk>] + <gk> autw</gk> 799
| <gk> maqein</gk>] <gk>idein</gk> 82-135 73-500 19 <it>f</it><sup>-129</sup> <it>n</it>-<sup>628</sup> 30`-85<sup>mg</sup> 392 55 130 799 <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7 Ruf <it>Ex</it> II 4 Arm
: <it>observans eum scire</it> Bo
:> 72 761
| > <gk>ti/</gk> A 135 131 30` 121 799
| > <gk>to/</gk> 54-414
|<gk>au\tw=</gk>]
: <gk> auton</gk> 75
: <gk>autou</gk>*vid)
: <gk>auto</gk> 58-35* 16 <it>b</it> 610 18 799 (sed hab Compl)
:> 53, 30`
5
: <gk>kateteuh</gk>
246
<gk>de/</gk>] > 56*-246 130 799 72
+ <gk>kai</gk> 56*-246 130 799
|> <gk>lou/sasqai</gk> 458
| <gk>e)pi/</gk>] : <gk>eis</gk> 16 Bo
: <it>ad</it> <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7
: <gk>para</gk> 77 106
| potamo/n</gk> 1 (0)] ms:parabl. 2 (0) 73`-413-55O<sup>txt</sup> 53-129 128 <sup>Lat</sup>GregIl <it>Tr</it> 7
I > <gk>ai</gk> 761 527
|au)th=s</gk>] <gk>auth</gk> 761 sup ras 551
: > 72<sup>txt</sup>-82<sup>txt</sup> 57 106-610 628 127
:post <gk>pareporeu/onto</gk> tr 426
|<gk>eporeuonto</gk> 126
| para\ to\n potamo/n] <gk>en</gk> <gk>tw</gk> <gk>potamw</gk> 126<sup</sup></sup>
| para/] <gk>epi</gk> A 135-381` 57-761 125 56`-664 628 30 134 121 130 799 == Compl
: <gk>eis</gk> 610
| <gk>idousai</gk> 77*
| > <gk>th/n</gk> 1 (0) 14-78*-126<sup</sup></sup>-552 53*-56* 321 68` (sed hab Ald)
| qi=bin] <gk>qhkhn</gk> Compl
|<gk>e)n tw=i e)/lei] <gk> para</gk> <gk> to</gk> <gk>elos</gk> 85<sup>txt</sup>-l27<sup>txt</sup>-321-344<sup>txt</sup> <sup>Lat</sup>GregIl <it>Tr</it> 7
:> Aeth<sup>P</sup>
| > <gk>th/n</gk> 2 (0)] 118`-537 56* Arm
| a(/bran] <gk>abron</gk> 126<sup</sup></sup>
: <gk>maian</gk> 318
:+ <gk>auths</gk> 426 Ach Arab Sa<sup>3</sup> Syh == <9M>9
| > <gk>a)nei/lato</gk> -- (6) <gk>de/</gk> 126<sup</sup></sup>
| a)nei/lato] <gk>aneiletol</gk> <it>oI</it>-135 <it>C</it>`'<sup>-126<sup</sup></sup></sup> 108 <it>d</it><sup>-610</sup> 628<sup>c</sup> 321 <it>t</it><sup>-84</sup> 128` 18<sup>c</sup> 55<sup>c</sup> 646 == Ald
: <gk>aneilen</gk> 458 Cyr <sup>Gl</it> 392
: <gk>anhlen</gk> 458
: <it</sup>uscipere</it> Arm Bo<sup>B</sup>
| <gk> au)th/n</gk>] <gk>auto</gk> 458
: > 628
6
<gk>anoicas</gk>
58*-376-708 458
| paidi)on</gk>]
+< (^ Syh) <gk>to</gk> 376 128` Arm Syh == <9M>9
+< <gk>kai hn</gk> 15
: <gk>paidi[...]on</gk> 53*
+ (^ 64)
<gk>kai idou paidion<</gk> F<sup>b</sup> 64 <sup>mg</sup> == <9M>9
+ (^ Syh)
<gk>kai hn to paidion</gk> 376 630 Arm Syh
| klaion]
: <gk>klaionta</gk> 75*-458
: <gk>kaion</gk> 19* 527*
:> 799
post <gk>qibei</gk> tr 527 Bo<sup>B</sup>
| e)n th== qibei] en th <gk>qhkh</gk> Compl
:sub Syh == <9M>9
| h/ quga/thr faraw/ ~</gk> == Sam] sub Syh == <9M>9 Tar
| kai) e)/fh</gk>] sub Arm<sup>ms</sup>(mend)
: <gk>kai eipen</gk> 135-381` 126-500 125 56`-664 <it>n</it><sup>-158</sup> 55
| kai) 2 (0)]
ms:parabl. (7) 1 (0) 53
| tw=n paidiwn/ tw=n ~braiwn] <gk> twn</gk> <gk>ebraiwn</gk> <gk> to</gk> <gk>paidion</gk> 126
:tr 708 551*
| <gk>touton</gk> 458
7
<gk>kai\
eipen] <gk>eipe(n)</gk> <gk>de</gk>
<it>b</it><sup>-537</sup>
<it>n</it> <it>x</it> 392
<sup>Lat</sup>cod
100 (sed hab Compl)
+ <gk>de</gk> 537
+ <gk>auth</gk> 55
| <gk> autou</gk> <gk> h</gk> <gk> adelfh</gk> 19 619
|</gk> > <gk>th=| qugatri) faraw/</gk> 55
| <gk>qelhs</gk> 376 14`-131-500 458 30 55
| soi 1 (0)] ms:parabl. 2(0) 313
| <gk> trefousan</gk> <it>x</it>
|</gk> > <gk>e)k tw=n )ebraiwn 72 52`-126-761
| e)k] <gk>apo</gk> 75
| kai) 2 (0) ] <gk>tou</gk> 52`-761
| qhla/sei] <gk>qhlash</gk> 52<sup>c</sup>-615-761 56 55 Aeth
: <gk> qhlasai</gk> 52*
: <gk>qhlaqh</gk> A
| > <gk</sup>oi 2(0)] 78 59 Aeth
| paidi)on]
+ <gk>touto</gk> <it>b</it> Aeth (sed hab Compl): ex .9
8
<gk>h/
de) eipen] <gk>eipe(n)</gk> <gk>de</gk> F 58`
25<sup>txt</sup>-57`-77
56<sup>c</sup>-129-246
<it>n</it><sup>-628</sup>
<it>y</it><sup>-527</sup> 130 646` == Compl
: <gk>kai</gk> <gk>eipen</gk> M 64<sup>mg</sup>-135-381` 73-126-500 <it>b</it> 106 53`-56* 628 46-84 527 18 509 <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7 == Ald
| eIpen -- faraw/] <gk> qugathr</gk> <gk> faraw</gk> <gk> eipen</gk> <gk>auth> 76
:> <gk>au)th=| -- faraw/</gk> 107`-125
:> <gk>au)th=</gk> B 246 Arab Arm
:> <gk>h/ qug. faraw
*****[problem area?]
/</gk> 44` 619 Cyr <it> Gl</it> 392
| <gk>h(</gk> 2 (0) -- <gk>e)ka/lesen] <gk>fe<sup>r</sup></gk> <gk>poreuo<sup>u</sup></gk> <gk>efer</gk> 458
| <gk>faraw/</gk> ms:parabl. (9) 422
|<gk>apelqousa</gk> 64<sup>mg</sup>-82 <it>b</it> <it>d</it><sup>-610</sup> 321<sup>mg</sup> <it>t</it> 55 509 Cyr <it>G1</it>392 Aeth<sup>C</sup>
| > h( 3 (0)] Sixt
| <gk>tou</gk>
<gk>paidi/ou</gk>] litt <gk>tou</gk> 1<pai</gk> sup ras 15
9
eipen de]
: <it>dixitgue</it> <sup>Lat</sup>cod 100
: <it>et</it> <it>dixit</it> GregIl <Yr</it> 7 Ruf <it>Ex</it> II 4
| pros authn</gk>]
<gk>auth</gk> <it>n</it> Cyr <it>Gl</it> 392 <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7 == <9M>9
| quga/thr]
+ <gk> tou</gk> <gk>paidiou</gk> 761*
|<gk>diath/rhso/n moi] <it>cape</it> Arm
:> <gk>moi</gk> 1 (0)] Ach Bo<sup>A*</sup>- Sa == <9M>9
| > <gk>tou=to</gk> 246 55 509 Arm
| > <gk>moi</gk> 2 (0)] 414 Cyr <it>Gl</it> 392 Aeth<sup>R</sup>
| e)gw/ de/] <gk>kai</gk> <gk>egw</gk> 619
| de\ dw/sw] <gk>didwmi</gk> 392
: <gk>de</gk> <gk>didwmi</gk> 799
| misqo/n] + <gk</sup>ou</gk> 376` <it>z</it> Arm Co == <9M>9
|</gk> > <gk>elaben -- paidion</gk> 2 (0) 246
| e)qh/lacen]
: <gk>eqhlasen</gk> M 59 <sup>Lat</sup>cod 100 Aeth Arm Syh
: <gk>eqhlacon</gk> 537
| au)to/</gk> 2 (0)]
: <gk>autw</gk> 376 509
: <gk>auton</gk> 75*
: <gk>au<sup>t</sup></gk> 458
10
<gk>a\drunqe/ntos
de/]
+<gk>kai</gk> 58<sup>mg</sup> 106
| : <gk>andrunqentos</gk> F<sup>a</sup> M <it>O</it>`"<sup>-29 58<sup>mg</sup> 64<sup>c</sup> 426*</sup> <it>C</it>`"<sup>-52` 54 77 313</sup> <it>b</it> <it>d</it><sup>-106</sup> <it>f</it><sup>-129</sup> <it>n</it> 30` 46-74-84 <it>x</it> <it>y</it><sup>-121</sup> 68`-120 18 59 130 319 509 646` Cyr <it>Gl</it> 392<sup>F</sup>
: <gk>andrusqentos</gk> 509*
: <gk>andruqentos</gk> 708 75 30 71<sup>c</sup>
: <gk>andriqentos</gk> 58 458 799
: <gk>andrwqentos</gk> 414` 59
: <gk>adruqentos</gk> 52-54
| <gk>de/</gk> 1 (0)] > 58<sup>mg</sup>
+ hdh</gk> Cyr <it>Gl</it> 392<sup>P</sup>
|<gk>au)to/]
: <gk>auton</gk> 246
| <gk>faw</gk> 646
| e)genh/qh]
: <gk>egennhqh</gk> 313 314 30 630 130
: <gk>egeneto</gk> 129 == Compl
| au)th=]
: <gk>auths</gk> 458
| e)pwno/masen de/]
+<gk>kai</gk> <gk>eponomasen</gk> 458 <sup>Lat</sup>Ruf <it>Ex</it> II 4
: <gk>wnomase</gk> <gk>de</gk> 126
| Mwush=n F<sup>b</sup>]
: <gk>Mwush</gk> A F M 29-82-376-707* 118`-537 30-85-127-343` <it>y</it> 55 130 509
: <gk>mwshn</gk> 15-72-381` 57-422 53` <it>n</it><sup>-628</sup> 46 18 59 799
: <gk>mwsh</gk> 64*(vid)-135-426-708 <it>C</it>`"<sup>-57 414` 422</sup> 19` <it>x</it> 646 (sed hab Compl)
: <gk>Mwusshn</gk> 68`
|<gk>le)gousa</gk>]
+<gk>oti</gk> 56<sup>c</sup>-129-246 628 84 <sup>Lat</sup>cod 100 Ruf <it>Ex</it> II 4 Aeth Syh == Compl <9M>9
| "<gk>au)to/n] > F 58-707 392 59 130 509
| aneilomhn</gk>]
: <gk>aneilamhn</gk> 82 F 58-707 392 59 130 509 85-127-343`
: <gk>anelabomhn</gk> 708
+<gk>auton</gk> F 58-707 392 59 130 509 708
: <gk>auto</gk> 85-127-343` 78 30-321
: <gk>autw</gk> 30
:(~)A <gk>F<sup>b</sup> M 64-376-<it>oII</it><sup>-82`</sup> <it>C</it>`"<sup>-52` 57* 78 126 761</sup> <it>d</it><sup>-610</sup> 56 75 730 <it>t</it><sup>-46</sup> <it>x</it> <it>y</it><sup>-392</sup> 55 76` Cyr <it>Gl</it> 392 Aeth Arab Arm Co Syh == <9M>9 (~)
11
<gk>e)ge/neto</gk>]
> 53`
: <gk>egenhqh</gk> 509
: <gk>de</gk>] > 376 53`
|<gk>tai=s</gk> 1 (0)] ms:parabl. 2 (0) 16
| h/me/rais</gk>] bis scr 55*
| tai=s pollai=s</gk>] sub Arm<sup>mss</sup> Syh
:> F<sup>b</sup> 72 129 799 == <9M>9
: post <gk>e)kei/nais</gk> (~)708 422 19 <sup>Lat</sup>cod 100(~)
+<gk>hmerais</gk> 16<sup>c</sup>
| > <gk>e)keinais</gk> Aeth Arm
| : <gk>ginomenos</gk> 664*
: <gk>genamenos</gk> 75*
| Mwush=s]
: <gk>mwshs</gk> 15-72-135-426 25-77-126-414`-552 <it>d</it><sup>-44</sup> 53` <it>n</it><sup>-628</sup> <it>x</it> 121 130
: <gk>mwusshs</gk> 68`
| e)ch=lqen</gk>] > 59
: <gk>hlqe</gk> 392
:+ <gk>de</gk> 527
| tou\s</gk> <gk>ui)olu\s</gk> <gk>)Isra~l</gk>] sub Syh<sup>L</sup>
:+ metob Syh<sup>T</sup>
: > 426 318 59 <sup>Lat</sup>cod 100 Aeth == <9M>9
| <gk>de/</gk> 2 (0)] 54
| ton po/non]
: <gk>twn</gk> 707 54 53 458 30-321 18
(<gk>ton</gk> 30-321*)
: <gk>ponwn</gk> 707 44 53 458 30-321 18
: <gk>topon</gk> 46
| ora]
: <it>invenit</it> Aeth
| anqrwpon Ai)gu/ption]
+<gk>tina</gk> <it>C</it>`"<sup>-126</sup> 646 54*
<gk>aiguPtion</gk>
(<gk>aigupteion</gk> 54*)
+<gk>andra</gk> <it>C</it>`"<sup>-126</sup> 646
| anqrwpon] <gk>paidion</gk> 107`-125
: <gk>tina</gk> 126; > Chr X 325
+<gk>tina</gk> 82
| <gk>eguption</gk> 376
| <gk>tina</gk>] > 72 52`-126-761 509 Cyr <it>Gl</it> 400<it>P</it>
+<gk>aiguption</gk> 376
| )ebrai=on] <gk>ebraiwn</gk> 29*-376-618 25 30 128
:> 392 59
:+<gk>ena</gk> 56`-129
| tw=n e)autoil a/delfw==n]
<gk>ton</gk> <gk>eautou</gk> <gk>adelfon</gk>68`-120 (sed hab Ald)
(<gk>adelfwn</gk> 122*)
: <gk>twn autou adelfon</gk> 30
: <gk>ton autou</gk> ad<sup>e</sup> 458
: <gk>ton adelfon autou</gk> 618 85
|<gk>tw=n</gk> 1 (0)] <gk>to</gk> 314*
| e)autou a/delfw=n] <gk>autou</gk> <gk>adelfwn</gk> 56 75 730
: <gk>adelfwn</gk> <gk>autou</gk> A F M 29`-135-376-<it>oI</it><sup>-618</sup> <it>C</it>`" <it>d</it> 129-246 127-321-343` <it>t</it> 71 <it>y</it> 18 59 76` 509 646 Cyr <it>Gl</it> 400 verss == Compl <9M>9
<gk>(eautou</gk> Cyr<sup>P</sup>)
| tw==n ui)w==n)Israh/l</gk>] pr <gk>twn ebraiwn</gk> 64<sup>mg</sup>
:sub Syh
: <gk>tw=n</gk>] > 118`-537
:> <gk>ui)w=n</gk>] > 59*
:> 58 75 == <9M>9
12
<gk>peribleWa/menos
de/]
+<gk>kai</gk> <gk>peribleWamenos</gk> <it>b</it> <sup>Lat</sup>cod 100 (sed hab Compl)
: > de/ 52` 761 646
ora] : <it>videbat</it> Arm
: <gk>ouqena</gk> 527
kai patacas]
: <gk>de</gk> M b n-628-527 18 55 Chr X 325 (sed hab Compl)
| <gk>to/n</gk> -- fin] <gk> auton</gk> <gk> katexwsen</gk> <ammw</gk> Phil III 141
| e)/xruWen au)to/n</gk>] pr <gk>exousen</gk> 458
: > <gk>au)to/n</gk> 59 Phil I 121
| ammw] : <gk>wammw</gk> 85-127-321<sup>txt</sup> 343`
13
: <gk>ecelqonti</gk>
799
| <gk>th=| h/me/rai] > 376: homoiot; bis scr 628(|)
| o(ra] : <it>videbat</it> Arm
: <gk>invenit</gk> Aeth
| <gk>andras</gk>] > 708 Chr X 325
| > <gk>)*ebraious</gk> A*(vid) l2l<sup>txt</sup>
|<gk>d1aPlhktiZolme/nous] + pros allhlous <it>x</it>
| legei] + <it>moyses</it> Aeth<it>-R</it>
| a)dikou=nti] : <gk>eni</gk> Chr X 325
| dia/] : <gk>ina</gk> 19` Cyr <it>Gl</it> 401 (sed hab Compl)
| tu/pteis</gk>] pr <gk</sup>u</gk> B 29-58-82-376 19` 53`-129 628 <it>y</it><sup>-121</sup> <it>z</it> 59<sup>c</sup> 130 799 Cyr <it>Gl</it> 400<sup>P</sup> 401 == Ra Tar
: <gk>tupths</gk> 56` 55
| <gk>plhsion</gk>] + <gk</sup>ou</gk> 15-426 78 <it>n</it><sup>-628</sup> <sup>Lat</sup>cod 100 Tert <it>Marc</it> IV 28 Arab Co Syh ^^
14
<gk>eipen
1 (0)] <gk>pros</gk> <gk>auton</gk> Cyr
<it>Gl</it>
401 (sed hab 400)
+<gk>autw <it>n</it><sup>-628</sup> Aeth Sa<sup>3c</sup>
|<gk>tis] : <gk>ti</gk> 376-618
+<gk>enim</gk> <sup>Lat</sup>cod 100
| <gk>kate/sthsen]
+<gk>eis</gk> 64<sup>mg</sup>-426 Arm<sup>ap</sup> Syh ^^
+<gk>andra</gk> 64<sup>mg</sup>-426 Arm<sup>ap</sup> Syh ^^
^ 64 Arm<sup>mss</sup> Syh
+ ^ <it>virum</it> Arm<sup>te</sup>
| a)/rxonta] : <gk>krithn</gk> Luc l2.l4<sup>te</sup> ClemR 4<sup>ap</sup>
: <gk>dikasthn</gk> Luc l2.14<sup>ap</sup>
| kai) dikas~n] <gk>h</gk> <gk>meristhn</gk> Luc l2.l4<sup>te</sup>
:] > Luc l2.14<sup>ap</sup>
| kai</gk> 1 (0)] <gk>h</gk> F ClemR 4<sup>ap</sup> <sup>Lat</sup>PsHi <it>Ep</it> II 1 quodv <it>Prom</it> 1 Tert <it>Marc</it> IV 28
|<gk>h/mw==n</gk> Act 7.27]
: <gk>umwn</gk> 44`
: <gk>hmas 58*-72-82`-376*-381` <it>C</it>`" <it>b</it> 53`-56*-246 <it>n</it> 30` 74 619 121-527 68`-630 55<sup>c</sup> 76 646` Luc 12.14 Chr passim Cyr <it>Gl</it> 400 (sed hab 401) Procop 520
| <gk>mh/</gk> F<sup>a</sup>] <gk>h</gk> A F M 15*-29`-135-376`-<it>oI</it> <it>C</it>`"<sup>-77* 126</sup> 56`-129 <it</sup></it><sup>-30`</sup> 318` 18 55 76` 130 509 646` Cyr <it>Gl</it> 400 401 <sup>Lat</sup>ClemR 4 Aeth Bo Syh ^^
: <it</sup>i</it> Arm
|me su/</gk>]
me : <gk</sup>oi</gk> 319
: <gk>et me</gk> quodv <it>Prom</it> 1
:(~)<sup>Lat</sup>cod 100(~)
: <gk</sup>u/</gk>] > 426-707 25-52`- 54*-126-313` 44 53` 321 84 Chr X 325 (sed hab passim) Aeth<sup>CG</sup> Arm Syh
| qeleis <gk</sup>u</gk> 381` 458
| qe/leis] <gk>qelhs</gk> 58-376 108 56` 84 (sed hab Compl)
: <gk>legeis</gk> 64<sup>mg</sup> Syh ^^
| o(/n -- e)xqe/s] <gk>ws</gk> <gk>xqes</gk> Chr X 325
|</gk> o(\n <gk>tro/pon</gk>] bis scr 126(|)
| a)nei=les] : <gk>aneilon</gk> 78*(vid)
: <gk>eiles</gk> 619
:post <gk>eKqes</gk> (~)509 Arm(~)
+ ras 4 litt 25
| e)xqe/s / to\n Ai)gu)Ttion</gk>] > <gk>to/n</gk> Chr X 325 (sed hab I 473 XVII 181)
: (~)A F M <it>O</it>`<sup>-126 707</sup> -64 <it>C</it>`" 118`-537 56` <it</sup></it><sup>-30`</sup> 84-134-370 <it>y</it><sup>-527</sup> 18 76` 130 646 Cyr <it>Gl</it> 400<sup>F</sup> 404 <sup>Lat</sup>cod 100 Aeth Co Syh(~)
| e)xqe)s</gk> B* F M 64*-708-<it>oII</it><sup>-7O7</sup> 56-129 134-370 318 407-630 Act 7.28 ClemR 4<sup>te</sup>]
<gk>th xqes</gk> 509
:sub Syh ^^
: <gk>xqes</gk> Chr I 473 XVII 181 Cyr <it>Gl</it> 400 404 rell
| : <gk>mwshs</gk> 64*-1 35-426-708 25*-52`-126-313`-500-551 <it>d</it><sup>-44</sup> 53` <it>n</it>
: <gk>mwusshs</gk> 122
| kai eipen] <gk>kai</gk> <gk>legei</gk> <it>b</it> 392 (sed hab Compl)
: > Ach
| ei)</gk>] pr <gk>w</gk> 59
: > Bo
|<gk>outws] : <gk>outw</gk> 126-551
: > <sup>Lat</sup>cod 100
| gegonen emfanes C`"
| emfanws</gk> 458
| tou=to</gk>] sub Syh
> Ach Arm Sa == <9M>9
15
> init -- <gk>Mwush=n
<it>x</it>
|</gk> > init -- <gk>touto</gk> 16-54<sup>txt</sup> Aeth<sup>-C</sup>: homoiot
| h)/kousen de/] +<gk>kai</gk> <gk>hkousen</gk> 106 53`
:> de/ 422
| faraw(</gk> 1 (0) ] farw 129*
post <gk>tou=to</gk> (~)Cyr <it>Gl</it> 400(~)
| to rhma touto</gk>] > <gk>touto</gk> 125 Chr X 325 Arm
: > 610 458
| e)ch/tei</gk>]
+<it>pharaoh</it> Aeth<sup>-CR</sup>
| a/nelein] +<gk>auton</gk> 107` 458 <it>t</it>
| Mwush=n] <gk>ton</gk> <gk>mwshn</gk> 426 53*-664 75<sup>C</sup>-458
: <gk>ton</gk> <gk>mwush</gk> 53<sup>C</sup>
:+< <gk>ton</gk> F<sup>a</sup> 58-376-381` <it>b</it> <it>d</it><sup>-106</sup> 56`-129 75*-628 343<sup>C</sup> <it>t</it> <it>x</it> 121-527 18 55 76` 130 799 == <9M>9
: <gk>mwusin</gk> 135
: <gk>mwusshn 68`
: <gk>auton</gk> 72 106 509
| Mwush==s] <gk>mwshs</gk> 64*-72-135-426 14`-126-500 53` 75 18
: <gk>mwusshs 68`
:> 458
|<gk>faraw/ 2 (0) ] <gk>autou</gk> 707
| katw/ikhsen]
: <gk>wkhsen</gk>
(<gk>wkisen</gk> 68)
B 15 53`-56* <it>n </it> 392 68`-120` 55 130 (sed hab Ald) == Ra
| e)n gh==] <gk>eis</gk> <gk>ghn</gk> 15` <it>x</it>
| Madia/n 1 (0)] Compl Syh]
: <gk>madiam</gk> Phil I 115 Cyr <it>Gl</it> 193 400 rell == Ra ^^
: contra <9M>9
:+ ras 2--3 litt 75
ms:parabl. 2 (0) M 72-426 77<sup>txt</sup>-131 <sup>Lat</sup>cod 100 Ach Sa<sup>3</sup> Syh<sup>L<sup>txt</sup>T</sup> == <9M>9
| e)lqw(n de/]
<gk>kai</gk> <gk>elqwn</gk> 125 <it>x</it>
:+ <gk>katw<sup>k</sup></gk> 458
| ei)s gh=n]
<gk>en th gh</gk> Cyr <it>Gl</it> 400 (sed hab 193)
: <gk>en</gk> <gk>gh</gk> 125 246 509 Arm
| Madia/n 2 (0)] Compl <sup>Lat</sup>quodv <it>Prom</it> 1 Syh<sup>L<sup>mg</sup></sup>
<gk>madiam</gk> Cyr <it>Gl</it> 193 400 rell == Ra
| e)ka/qisen</gk>] +< <gk>kai</gk> 72-426 <sup>Lat</sup>cod 100 Syh == <9M>9
: <gk>ekaqhto</gk> <it>n>
(: <gk>ekaqito</gk> 458)
+<gk>de</gk> 131
16
<gk>Madia/n</gk>
Compl Syh] <gk>ioqor l8<sup</sup>up Iin</sup> >
76`
: <gk>madiam</gk> Cyr <it>Gl</it> 193 400 rell == Ra
| > <gk>h)san <it>O</it> Syh == <9M>9
| e(pta\ qugate/res</gk>] (~)458(~)
+ (^ Syh)
<gk>hsan</gk> <it>O</it><sup>-426</sup> Syh ^^: contra <9M>9
| poimainousai -- au)tw=n 1 (0)] sub Syh<sup>L</sup> == <9M>9
+ metob Syh<sup>T</sup>
| > <gk>ta/</gk> 1 (0)] 76
| tou= patro(s au)tw=n</gk> 1 (0)] F<sup>b</sup> <it>O</it><sup>-58</sup>-29-7O7<sup>txt</sup>-708 <it>cI</it> 118`-537 106 53` 628 121 799 Cyr <it>Gl</it> 193<sup>P*</sup> <sup>Lat</sup>cod 100 Ach Aeth Arm Sa<sup>3</sup> Syh]
+<<gk>ragouhl</gk> 46<sup>c</sup> 509
+<<gk>ioqor</gk> A F <it>d</it><sup>-106</sup> <it>n</it><sup>-628</sup> <sup>t</sup><sup>-46<sup>c</sup></sup> 318` 76` Cyr Gl<it></it> 193<sup>F</sup> Bo
: <gk>iwqwr</gk> 76 319*
: <gk>ioqwr</gk> 84 318 319<sup>c</sup>)
+<gk>iothor et raguhel</gk> <sup>Lat</sup>codd 94--96
+<gk>iothar et raguhel</gk> <sup>Lat</sup>cod 91
+<gk>iorqor</gk> 551*
+<gk>iwqwr 68`-120`
+<gk>ioqwr</gk> 15-64*-381` 14-25-52`-54-131-313-422-500 19` 527 59 646 Cyr <it>Gl</it> 193<sup>P<sup>c</sup></sup>
+<gk>ioqor</gk> Cyr <it>Gl</it> 400 rell == Compl Ra
| au)tw=n 1 (0)] <gk>autou</gk> Sixt
| > <gk>parageno/menai -- fin] 7O8<sup>txt</sup> <it>cI</it> 509: homoiot
| : <gk>paragenamenai</gk> 707 75 392
| > de/ 2 (0) 106(||)
| h)/ntloun] : <gk>hntlhsan</gk> 76 Bo;
<it>hausivit</it> Aeth
| e)/ws]
+<gk>oun</gk> 53
+<gk>ou</gk> 708(<sup>mg</sup>) 664 <gk>799
| e)/plhsan]
: <gk>eplhrwsan</gk> 72-707 118`-537 84 121 130
: <it>implevit</it> Aeth
| decamena/s]
+<gk>ta</gk> 75
: <gk>pothsthria</gk> 75
|<gk>potisai]
+ ras ca 7 litt 319
| au)tw=n 2 (0)]
+<gk>ioqor</gk> A<sup>c</sup> <it>b</it> 82 56`-129 392 128` 55 130 799 Cyr <it>Gl</it> 400 Ach Sa == Compl Ra
+<gk>ioqwr</gk> 15-64<sup>mg</sup> 19<sup>c</sup>-108 527 319 Cyr <it>Gl</it> 193
+<gk>iwqwr</gk> 19* 68`-120` 76
17
<gk>parageno/menoi]
> 44 128
: <gk>paragenamenoi</gk> de 707 392
: <gk>paragenamenos de</gk> 75*
: <gk>kai</gk> 44 125
+<gk>elqontes</gk> 44;
+<gk>apelqontes</gk> 125
:de] > 128 44 128
| <gk>poimainontes</gk> 628
| e)ce/balon]
: <gk>eceballon</gk> B M 58-82`-135 118-314<sup>c</sup>-537 628 <it</sup></it><sup>-730</sup> 392-527 120` 18* 76<sup>c</sup> 130 319 509 Cyr <it>Gl</it> 193<sup>F</sup> 400<sup>F</sup> <sup>Lat</sup>cod 100
: <gk>ecebalen</gk> 44
: <gk>ecebalan 19 799
: <gk>eceilon</gk> 125
| a\nasta/s -- au)ta/s 2 (0)] > 130: homoiot.
| de] > 120*; bis scr 126(||)
: <gk>mwshs</gk> <it>O</it><sup>-58</sup> -135 <it>C</it>-126 53` <it>n</it><sup>-628</sup>
: <gk>mwusshs</gk> 68`
| autas</gk> 2 (0)]
+<gk>kai</gk> 56<sup>mg</sup>-129 246 Ach Sa
+<gk>ta</gk> 56<sup>mg</sup>-129 246 Ach Sa
+<gk>probata</gk> 56<sup>mg</sup>-129 246 Ach Sa
+<gk>autwn</gk> 56<sup>mg</sup>-129 246 Ach Sa
+<gk>apo</gk> 56<sup>mg</sup>-129 246 Ach Sa
+<gk>twn</gk> 56<sup>mg</sup>-129 246 Ach Sa
+<gk>poimenwn</gk> 56<sup>mg</sup>-129 246 Ach Sa
|<gk>kai 1 (0) ms:parabl 2(0)] A F 29`-135-426 <it>b</it> <it</sup></it> <it>x</it> 121` 128` 59 509 Aeth Arab Bo Syh == <9M>9
|autais] > <sup>Lat</sup>cod 100 Sa<sup>1</sup>
: <gk>autas</gk> 126 53
|: <gk>epotisan</gk> 72-<it>oI</it> <it</sup></it><sup>-730</sup> 76 Aeth<sup>-F</sup>
: <gk>epothsan</gk> 30
| pro/bata]
+<gk>tou</gk> 29-135 126 56<sup>c</sup>-129-246 <it</sup></it> 84 630 646
+<gk>patros</gk> 29-135 126 56<sup>c</sup>-129-246 <it</sup></it> 84 630 646
| ><gk>au/tw=n</gk> Aeth Bo
18
> init -- <gk>au/tw=n</gk>] > 730: homoiot
| parege/nonto de/]
: <gk>paregeneto</gk> de 82 551*
<gk>kai pareg.</gk> 72 125 527
:> de/ ] > 59 <sup>Lat</sup>cod 100 Bo<sup>A</sup>
| R(agouh/l] <gk>ragoughl</gk> 246
: <gk>ioqor</gk> A 82 73-77<sup>mg</sup>-413<sup>mg</sup>-550-552<sup>mg</sup> 118`-537 <it>d</it><sup>-106</sup> 85`<sup>mg</sup>-344<sup>mg</sup> 46*-74`-370 <it>x</it> 392 <sup>Lat</sup>cod 100 Ach Sa
: <gk>ioqwr</gk> 57<sup>mg</sup> 19` 84 527 319 Cyr <it>Gl</it> 196 (sed hab 400 Compl)
: <gk>iwqwr</gk> 76
: <gk>iorqor</gk> 552<sup>txt</sup>
+<gk>ioqor</gk> Syh<sup>Tmg</sup>
| o( de) erpen]
eipen de 118`-537
| o( de/]
<gk>ioqor</gk> 730sup lin
: <gk>kai</gk> 392 <sup>Lat</sup>cod 100
: > 500
| > <gk>au/tai=s] > <it>d</it> <it>t</it> == <9M>9
| ti -- 4.19 Aigu[pton] absc 381(||)
| ti) oti] dia ti</gk> B 15` 392 Epiph I 367 Syh
:> <gk>oti</gk> 54 Arm<sup>ap</sup>
| <gk>etaxunete</gk> (<gk>etaxunetai</gk>*) 761
| tou --</gk> fin] <gk</sup>hmeron tou elqein</gk> Epiph I 367
:> <gk>tou= <it>O</it><sup>-376</sup> 25 392
19
<gk>ai) de)] oi de</gk> 53(|) 458
: <gk>h</gk> de 82
: <gk>kai</gk> 106
| eipan]
: <gk>eipon</gk>A F <it>O</it><sup>-426</sup>-29`-82*-135-618 78-126<sup</sup></sup> 19` <it>d</it> 53`-246 75 <it</sup></it> 318-527 <it>z</it> 59 76` 130 509 Cyr <it>Gl</it> 196 (sed hab 400 Compl)
<gk>eipwn</gk> 376*
: <gk>eipen</gk> 71
: <gk>ei<sup>p</sup></gk> 458
+<gk>autw</gk> 64<sup>mg</sup> 246 <sup>Lat</sup>cod 100 Aeth Arab Bo
| anqrwpos] <gk>anhr</gk> Epiph I 367 ^^
:bis scr F
| Aigu/ptios] <gk>eguptios</gk> 537;
> 414*
| a\po/]
: <gk>ek</gk> 75 Cyr <it>Gl</it> 400 (sed hab 196) 426 Arab == <9M>9
+<gk>xeiros</gk> 426 Arab == <9M>9
| kai</gk>1 (0)] ms:parabl 2 (0)] Arab Bo<sup>B</sup>
| h)/ntlhsen</gk>]
: < ^ 64 Syh
: <gk>antlwn <it>O</it><sup>-72</sup>-64<sup>mg</sup> Syh == <9M>9
| > <gk>h/mi=n</gk> Epiph I 367 Arm
| <gk>epotisamen</gk> 72 107`-125 59
| ta pro/bata</gk>] pr <gk>hmwn</gk> Epiph 1 367
+<gk>hmwn</gk> B M <it>O</it>`-15` 77<sup>c</sup> 19` <it>d</it> <it>f</it> <it>n</it> <it>t</it> <it>x</it> 392-527 <it>z</it> 18 55 76` 130 799 Cyr <it>Gl</it> 400 (sed hab 196) <sup>Lat</sup>cod 100 Aeth Arab Arm Sa == Tar<sup>P</sup> Ra
20
<gk>o( de)] kai</gk> 106
| tai=s qugatra/sin au)tou=] > 126 107`-125
: <gk>au<sup>t</sup></gk> 458
| > <gk>kai)</gk> 1 (0)] > A F M <it>oI</it>-135-707 <it>C</it>`"<sup>-77'<sup>c</sup></sup> <it</sup></it> 318 18 59 76` 646 Bo Sa<sup>1</sup>
| e)stin] + o anos 72 <it>z</it> (sed hab Ald)
| > <gk>kai) 2 (0)] > 376` 761 527 128 Arm Sa Syh == <9M>9
| ou(/tws] : <gk>outw</gk> M 458 127 128` 18
: <gk>outos</gk> 376 30 509 == <9M>9 Sam Tar<sup>O</sup>
: <gk>auton</gk> Phil III 177
: > B* 15` 75 730 527 Aeth<sup>CR</sup> Arm
| : <gk>katelipate</gk> 72 14`-54-131-414` 458 318
: <gk>kateleipate</gk> 318
: <gk>kateloipate</gk> 72 14`-131 458
| ton -- au/ton] > Phil III 177
auton
+<gk>kalesate</gk> Phil III 177
|to\n</gk> <gk>a)/nqrwpon]
: <gk>auton</gk> 72 126-413 <gk>z</gk> (sed hab Ald)
| > <gk>oun</gk> M 135 25-126-552<sup>txt</sup> 75 <it</sup></it> 527 18 646 Aeth == Ald <9M>9
| au/to/n]
: <gk>autw</gk> 54
: <gk>ton anqrwpon</gk> 53` <it>z</it> (sed hab Ald)
|<gk>o=pws fa/gh] <gk>fagein</gk> 126<sup</sup></sup>
: <gk>opws : <gk>faghtai</gk> 628
| opws]
: <gk>ina</gk> 799
+<gk>an</gk> Phil III 177
|<gk>a)/rton</gk>] pr <gk>ton</gk> 314
: <gk>artwn</gk> 54
21
: <gk>katwkhse(n)</gk>
84 318-527 76`
| Mwush=s] : <gk>mwshs</gk> 64*-72-135-426 <it>C</it><sup>-422</sup> 106 53` <it>n</it> <it>x</it> 121
: <gk>mwusshs</gk> 68`
| e)ce/doto</gk>]
+<<it>vir</it> Sa<sup>1</sup>
: <gk>ezedeto</gk> A 82* 127-343` 55*(vid)
+<gk>auton</gk> 72
+<gk>autw</gk> <it>O</it><sup>-72</sup> <it>d</it> 56<sup>c</sup>-129-246 <it>n</it><sup>-628</sup> <it</sup></it> <it>t</it><sup>-46</sup> <it>x</it>
| <gk>Sepfw/ran]
: <gk</sup>epforan</gk> 15 14`-131-422-500 <it>d</it> 53` 628 84 <it>x</it> 392<sup>c</sup>-527 68-122<sup>c1</sup> 55 76` 799 Bo
: <gk</sup>epfwra</gk> 72 246 509
: <gk</sup>ephora</gk> Sa<sup>1</sup>
: <gk</sup>ephpho=ra</gk> Sa<sup>3</sup>
: <it>zephoram</it> <sup>Lat</sup>codd 91 94--96
: <gk</sup>empfwra</gk> 78
: <gk</sup>emfora</gk> 7O7(vid) 314 458 128 18
: <gk</sup>empforan</gk> 75
: <gk</sup>emforan</gk> 54 == Ald
: <gk</sup>apfwra</gk> Ios <it>Ant 11 13.1<sup>te</sup>
:post <gk>th/n</gk> tr 426 == <9M>9
:post <gk>au/tou=</gk> tr Aeth
|<gk>au)tou=] > <it>x</it>
: <gk>autw</gk> 458
|<gk>Mwush==</gk>]
+<<gk>tw</gk> M 707 84 527
: <gk>tw mwusei</gk> 18 == Ald
: <gk>tw mwsh</gk> 426
: <gk>mwusei</gk> A 56* 120
: <gk>mwsh</gk> 25-126-313-615* 107` 53` <it>n</it> 619 121
: <gk>mwsei</gk> 135 52-78-413-615<sup>c</sup>-761
<gk>mwussei</gk> 68`
: <gk>autw</gk> 125 56<sup>c</sup>-129-246 Sa<sup>1</sup>
:> 72(|)
| gunai=ka</gk>]
+<<gk>eis</gk> 376 53` 128`
22
init -- <gk>gunh/</gk>]
+<<gk>kai</gk> 106
: <gk>labousa de h gunh en gastri</gk> <it>b</it> (sed hab Compl);
> 126 == <9M>9
|de/] > 106 458
| : <gk</sup>ullabousa</gk> Cyr <it>Gl</it> 400<sup>P</sup>
| <gk>uion h gunh eteken</gk> 708
|<gk>h/ gunh/</gk>] sub Syh
:] > 55 <sup>Lat</sup>cod 100 Sa<sup>3</sup>
+<gk>autou</gk> 628
| e)/teken ui)o/n</gk>] +<<gk>kai</gk> 426 == <9M>9
:sub ^ Syh
:] > 78<sup>txt</sup>
| e)/teken] <gk>egennhsen</gk> 130
+ <gk>de</gk> 126
+ <gk>ei</gk> Arab
|<gk>ui)o/n]
: <gk>arsen</gk> 376
+<gk>ei</gk> Sa<sup>1</sup>
+<gk>kai eteken</gk> 30
| e)pwno/masen]
: <gk>wnomase</gk> 126
: <gk>ekalese</gk> 58`
| to onoma autou (+<it>o</it> 126) <gk>mwushs</gk> (<gk>mwush 799
:mwshs</gk> 53` <it>n</it><sup>-628</sup> 321) 29-376 126 53` <it>n</it><sup>-628</sup> <it</sup></it> 799 Aeth Arm
|Mwush=s] : <gk>mwshs</gk> 64*-72-135-426 <it>C</it>`"<sup>-16 54 126 761</sup> 619 121 18
: <gk>mwusshs</gk> 68`
:sub Syh<sup>T</sup>
:] > A F 15-618 16-54 628 509 Arab == <9M>9
|] > <gk>to/</gk> 68 (sed hab Ald)
| Ghrsa/m] : <gk>girsam</gk> 75
: <gk>gersam</gk> Sa<sup>1</sup>
: <gk>ghrsem</gk> Ald
: <gk>ghrsos</gk> Ios Ant II 13.1
|</gk> > <gk>egwn</gk>] > 131 (|) == Tar<sup>O</sup>
| > <gk>o(/ti</gk>] > A 15 <it>b</it> (sed hab Compl)
|<gk>pa/roliko/s]
: <gk>geiwras</gk> Phil II 245
|<gk>eimi</gk>] +<<gk>egw</gk> 107`-1 25 619
: <gk>gegona</gk> 707<sup</sup></sup>
+<gk>egw</gk> 75 71 Arm
| allotria| -- 4.24 fin] absc 646(||)
|</gk> fin] + (^ M</gk> 85-344-730; 343)
<gk>to de (kai to</gk> pro <gk>tol de 799) onoma tou deuterou (adelfolu autou</gk> 44)
<gk>ekalesen</gk> (> <it>oI</it> <it>C</it>`" 118`-537)
: <gk>elieZer</gk> (+ legwn 58 <it>x</it> 130) <gk>o gar (<gk>de</gk> 130)
<gk>Qeos tou patros mou bohqos mou</gk> (> <gk>b mou</gk> 53` 130) <gk>kai er(r)usato (<gk>er(r)usatw</gk> 130;
<gk>eceilato</gk> <it>x</it>) me ek xeiros (<gk>xeirhs</gk> 30) <gk>faraw F M <it>O</it>`<sup>-376</sup>-29` <it>C</it>`" <it>b</it> <it>d</it> <it>f</it><sup>-56<sup>txt</sup></sup> <it>n</it> <it</sup></it> <it>t</it> <it>x</it> 121<sup>mg</sup>-318` 630 18 55 59 130 799 <sup>Lat</sup>cod 100 Arab Bo Syh<sup>LmgT</sup>: ex 18.4
+<gk>eti de sullabousa</gk> (<it>et</it> pro <gk>e. de sull.</gk> Aeth) <gk>eteken uion deuteron</gk> (] > 76) <gk>kai epwnomasen</gk> (c var
: <gk>ekalese</gk> 527 Ald)
<gk>to onoma autou elieZer (eliaZar</gk> 76`
:+<gk>legwn</gk> 527 Aeth Ald)
<gk>ol gar Qeos tou prs mou bohqos mou kai eceilato (ezeileto</gk> 76
: <gk>echlato</gk> 82
<gk>er(r)usato</gk> 527 Ald)
<gk>me ek xeiros faraw</gk> 82 527 76` Aeth<sup>Fmg</sup> <sup>Hmg</sup> == Ald
+<it>peperit autem alium filium (is) vocavit nomen eius eliezer</gk> Sa<sup>3</sup><sup>mg</sup>
23
init -- <gk>h/me)ras]
+<gk>metas</gk> 46
+<gk>hmeras</gk> 46
+<gk>de</gk> 46
| h(me/ras ta\s polla/s]
+<gk>pollas</gk> 72 761
+<gk>hmeras</gk> 72 761
:> <gk>ta\s polla/s</gk>] > 458 799 <sup>Lat</sup>cod 100 Hi <it> Or</it> <it> in</it> <it> Is</it> <it> hom</it> V 3
| > <gk>e)kei)nas</gk>] > <sup>Lat</sup> Hi <it> Or</it> <it> in</it> <it> Is</it> <it> hom</it> V 3 Aeth Arm
| Ai)gu/ptou</gk>]
+<<gk>ekeinos o</gk> 500
:+<<gk>ths</gk> Phil <gk</gk></gk> 160 (sed hab 279)
: <gk>ekeinos</gk> 135
: <gk>Aiguptiou</gk> 799
: <it>aegyptiorum</it> Bo
| kateste/nacan]
: <gk>katestenacon</gk> F 318 59(vid) Arm
: <gk>katestenacan</gk> 126
: <gk>katestecen 71*
: <gk>estenazen</gk> Phil II 271 (sed hab 246 I 160 279) Tht I 1521 1925
: <gk>anestenazen</gk> 58`
| oi) ui)oi))Israh/l</gk>]
> <gk>oi)</gk>] > 707 126 44-107 53` 59 319
> 321(||)
:post <gk>e)/rgwn 10</gk>] (~)72(~)
| e)/rgwn</gk> 1 <gk>]
+<gk>twn</gk> 707 <it>f</it><sup>-56*</sup> Tht I 1521 (sed hab 1925) <sup>Lat</sup>cod 100 Bo<sup>A<sup>mg</sup></sup> Sa: cf Tar<sup>O</sup> et 6.9
+<gk</sup>klhrwn</gk> 707 <it>f</it><sup>-56*</sup> Tht I 1521 (sed hab 1925) <sup>Lat</sup>cod 100 Bo<sup>A<sup>mg</sup></sup> Sa: cf Tar<sup>O</sup> et 6.9
+<gk>autwn</gk> Bas II 620; ms:parabl. 2 (0)] 414-55l<sup>txt</sup> 628
| kai 2 (0)] ms:parabl. 3 (0)] 730 Tht I 1521 1925
|: <gk>ebohsan</gk> 75
| a\ne)bh</gk>] post <gk>au/tw==n</gk> (~)15`(~)
| autwn h bolh</gk> Or VIII 129
| h boh/]
<gk>h</gk>
: <gk>fwnh</gk> 68`-120` (sed hab Ald);
h : <gk>kraugh</gk> 130
:> <gk>boh 392*
> 77*
| pro\s to\n Qeo/n]
: <gk>eti</gk> ton Qeon (> *) 78
:ad dnm <sup>Lat</sup>cod 100 Hi Ep XVIII a 2 == Tar;
om Ton Or Viii 129
+autwn 118`-537;
ad fin (~)619(~)
om apo 2 (0)] -- fin ] > 72-707 107' 125 76'
24
: <gk>hkousen</gk>
527
| o\ Qeo/s 1 (0)] <gk>ks</gk> 121 <sup>Lat</sup>cod 100 Ruf <it>Cant</it> 2 == Tar
:> Aeth<sup>R</sup>
post <gk>au)tw=n</gk> (~)<it>n</it>(~)
| to\n stenagmo/n</gk>]
+<<it>clamor eorum et</gk> Sa<sup>3</sup>
: <gk>twn</gk> (:1<ton</gk> 64-135-376 730)
: <gk</sup>tenagmwn</gk> 15-64-135-376-707 78-500-550`-761 106 53 85-730 <it>x</it> 318-392* <it>z</it> 18 59 76 799 Bas II 620 Or VIII 129 (sed hab Ald)
: <gk>tou stenagmou</gk> <it>n</it> Or III 226
: <gk>tous</gk> <gk</sup>tenagmous</gk> 72
| > <gk>au)tw=n</gk>] > 68 (sed hab Ald)
| o( Qeo/s 2 (0)] > 106 527 Aeth<sup>R</sup> == Ald
:post <gk>au/tou=</gk> (~)628(~)
| > <gk>au/tou=</gk>] > 77 799 == Tar<sup>P</sup>
| > <gk>kai 3 (0) 799 Aeth<sup>R</sup> == <9M>9<sup>L</sup> Tar
| <gk>isak</gk> B
| <gk>iakb</gk> 458
25
<gk>e)
: <gk>efeiden</gk> 318 319*
: <gk>eiseiden</gk> F M <it>oI</it> <it>C</it>`" 118` 56* <it</sup></it> 18
: <gk>eisiden</gk> A 29*-135 121 509
: <gk>eishden</gk> 321
:+<gk>ws</gk> 25
: <gk>eiden</gk> 25 59 799^^
: <gk>iden</gk> 628
: <gk>epolihsen</gk> 53`
| > <gk>o( Qeo/s</gk>] > Aug <it>Loc</it> <it>in</it> <it>hept</it> II 7<sup>te</sup>
| tous ui)ou)s</gk>]
+<<gk>epi 84
<gk>tois uiois</gk> 72 500 53` <it>n</it><sup>-628</sup>
+uious 344*(|)
|<gk>Israhl kai</gk>] > 25
|<gk>egnwsqh</gk> : <gk>epegnwsqh</gk> 19` 799
: <gk>emnhsqh</gk> 761 <it>x</it> Sa: ex .24
| <gk>autoli=s</gk>] autwn <it>x</it>
:> Sa
3
<gk</gk>
kai\ Mwush=s]
+<gk>o</gk> de mwushs</gk> 44
: <it>moyses autem</it> <sup>Lat</sup>cod 100
: <gk>mwusshs</gk> 68`
: <gk>mwshs</gk> 64*-72-135-426 126-551 -552* <it>n</it><sup>-628</sup> 121 Phil II 1O4<sup>ap</sup>
| )Io qo/r]
: <gk>ioqwr</gk> (et post <gk>au/tolu==</gk> (~)78(~))
15-64*-618 14-25-52`-54-57-78-131-313`-422-500 84 318-527 59 319 Phil II 104<sup>U</sup>
: <gk>iwqor</gk> 376
: <gk>iwqwr</gk> <it>n</it><sup>-458</sup> 68` -120` 76 Eus VI 236
: <gk>iethro</gk> Aug <it>Trin</it> II 23
: <gk>ragouhl</gk> 46<sup>c</sup> 509
:] > 72 19` 106 Sa (sed hab Compl)
|> <gk>tou= gambrou= au)tou=</gk> Phil II 104
| gambrou==]
: <gk>penqerou</gk> F<sup>b</sup> 64<sup</sup>up Iin</sup> 72 14-126-550`-551*-739<sup>c</sup> 314<sup>c</sup> <it>d</it> 129<sup>mg</sup> 73O<sup</sup>up lin</sup> 46<sup>c</sup>(vid) <it>x</it> 318<sup>c</sup>-527 76` 799 == Ald Compl ^^
+<gk>penqerou</gk> <it>b</it><sup>-314<sup>c</sup></sup>
| > <gk>au/tou==</gk>] > 739<sup>c</sup>
| tou= i)ere)ws Madia/n</gk>] > <gk>tou==</gk> 15` 25 458 318 799
:] > 106
|<gk>Madia/n</gk> Compl <sup>Lat</sup>Aug <it>Trin</it> II 23 Syh]
: <gk>madiam</gk> Phil II 104 Cyr passim rell == Ra
|<gk>u)/gagen]
: <gk>hge</gk>(<gk>n</gk>) A F M <it>O</it>`-135-707 <it>C</it>`" 19` 56* <it</sup></it> <it>x</it> 527 18 59 76` 509 799 Phil I 222 Cyr <it>Ad</it> 937 <it>Gl</it> 412 (sed hab X 781) Syh (sed hab Compl)
: <gk>hre</gk>(<gk>n</gk>) 29
| ta`</gk> <gk>Pro/bata 2 (0)] > <gk>ta/</gk> Phil I 222<sup>F</sup>
:+<gk>autou</gk> Cyr <it>Ad</it> 937 (sed hab <it>Gl</it> 412 X 781) Aeth
| upo/]
: <gk>epi</gk> 72-376 77 Cyr <it>Ad</it> 937 X 781<sup>te</sup>
: <gk>eis</gk> <it>f</it><sup>-56*</sup> Cyr <it>Gl</it> 412 <sup>Lat</sup>cod 100 Aug <gk>Trin</gk> II 23 Arab Arm Syh == Compl
| > <gk>th/n</gk> Compl
| > <gk>kai) hlqen <it>b</it> (sed hab Compl)
| hlqen]
: <gk>hlqon</gk> 628
: <gk>eishlqen</gk> 56<sup>txt</sup>; absc 56<sup>mg</sup>
| ei)s]
: <gk>pros</gk> 246
|<gk>to/</gk> -- fin]
<it>choreb</it>
<it>montem</it>
<it>dei</it> Aeth Arab Bo
| oros]
+<gk>tou</gk>
+<gk>Qeou</gk> F<sup>b</sup> M <it>O</it>-64<sup>mg</sup>-82 <it>b</it> <it>d</it> 56* <it>n</it> <it</sup></it> <it>t</it> <it>x</it> 527 <it>z</it> 18 76` 130 509 799 Cyr <it>Ad</it> 937 <it>Gl</it> 4l2 (sed hab X 78l) Eus VI 236 <sup>Lat</sup>cod 100 Aug <it>Trin</it> II 23 Arm Sa Syh == <9M>9 Sam
| xwrh/b</gk>]
+<<gk>en</gk> 527 509 Cyr <gk>Ad</gk> 937 (sed hab <it>Gl</it> 412 X 781) Eus VI 236 Arm
+<<gk>to</gk> (<gk>tw</gk> 53) 53`;
<gk>xorhb</gk> 68`-120`
<gk>xwrib</gk> 72
<gk>xorib</gk> 75 84
<gk>xwrhm</gk> 128
+<it>montem</it> <it>domini</it> <it>dei</it> Sa
24
<gk>t(jn
st~;nagmoln~l a s ~s ~a s ~s ~~~~ ~~ ~~~~ ol~mw~s ~~ autOiJ
~~~</gk>
127-344) <gk>M</gk> 64 57(s nom)-73(s nom) 85(s
nom)-127-321 -344
| diaqh/khs] (sunq] h/khs</gk> 64
25
<gk>e)etden]
a`</gk> ( > 1 08) <gk>Q` (s`</gk> SyhT)
<gk>eiden</gk>
108 Syh
| kai) e)gnw(/sqh au/toli==s] kai)</gk>
<gk>h/le)hsen au/tou/s Fb</gk>
Blankenship LXX Ex 3
3 1
<gk>gaj1br(J s] ra, i,iJfife] iJt(J S s
peiqerol s</gk> 64 <gk>
| hgagen] a hlasen
M</gk> 127-344;
<gk>...]</gk> set, 64
2
<gk>w(/fqh
de/]
+<gk>kai</gk>
: <gk>wfqh</gk> Cyr <it>Gl</it> 412 (sed hab <it>Ad</it> 937 X 781) DialTA 77 <sup>Lat</sup>Cyp <it>quir</it> II 19
| de) 1 (0)]</gk> <it>d</it> 126
| au/tw=i F<sup>b</sup>]
: <gk>moysi</gk> <sup>Lat</sup>quodv <it>Haer</it> IV 22 Aeth<sup>P</sup>
: <gk>auto</gk> 120
: <gk>autos</gk> 407
:] > F Ath II 352 DialTA 77 Or III 135 IV 39 <sup>Lat</sup>Ruf <it>Or</it> <it>princ</it> II 8.3
:post <gk>kuri)ou</gk> (~)58-426 Eus VI 235 (sed hab 236) == <9M>9 Tar(~)
| a)/ggelos]</gk>
+<<gk>o</gk> 52`-313` Procop 524
| kuri)ou]
:+<gk>tou</gk> 376 Iust <it>Apol</it> LXIII 11
: <gk>Qu=</gk> 376 Iust <it>Apol</it> LXIII 11
: <gk>Qu</gk> x 799 Iust <it>Apol</it> LXIII 7 (sed hab <it>Dial</it> LX 4) Bo<sup>A</sup>
:] > Act 7:30<sup>te</sup> Cyr <it>Ad</it> 232<sup>P</sup> (sed hab passim) HymenHier 17
| e)n -- (3)</gk> fin] bis scr 135
| ek tou (ths</gk> 76) <gk>batou en flogi</gk> <gk>(-gh</gk> 319) <gk>puros</gk> 76`
|</gk> om <gk>e)n puri) flogo/s</gk>] > <it>b</it><sup>-108mg</sup> (sed hab Compl)
| puri) flogo/s]</gk>
: <gk>flogi
: <gk>flogei</gk> F
: <gk>flogh</gk> 707* 318
: <gk>puros</gk> A F <it>O</it>`-29`-</gk>135 <it>C</it>`" 108 <it>d</it> <it>n</it> 30` <it>t</it> <it>y</it> 128` 59 130 424 509 Act 7:30<sup>te</sup> Thess II 1:8<sup>ap</sup> Ath II 352 Cyr <it>Gl</it> 412 (sed hab passim) DialTA 77 Eus VI 235 (sed hab 236) HymenHier 17 Iust <it>Apol</it> LXIII 7 <it>Dial</it> LX 1 (sed hab <it>Apol</it> LXIII 11 <it>Dial</it> LIX 1 LX 4) Or III 135 (sed hab IV 39) Procop 524 Tht <it>Ex</it> 101 patr lat et verss == Ald Ra <9M>9
<gk>puri ek ths flogos</gk> 246
| e)k tou=</gk> <gk>ba/tou</gk> Tht <it>Ex</it> lOl<sup>ap</sup>]
<gk>en batw</gk> Iust <it>Apol</it> LXIII 11 <sup>Lat</sup>Ruf <it>Or princ</it> 11 8.3: cf Act
7:35
: <gk>ek ths batou</gk> 72 126-131<sup>c</sup> 53` 75 30` <it>x</it> 527 799 Ath II 352 Cyr X 781 (sed hab <it>Ad</it> 232<sup>RV</sup> 937 <it>Gl</it> 412) HymenHier 17 Iust <it>Apol</it> LXIII 7 Tht <it>Ex</it> lOl<sup>ap</sup>
:om <gk>e)k</gk> <gk>tou=</gk>] > Act 7:30 DialTA 77 Eus VI 235 s Or III 135 IV 39 Tht <it>Ex</it> lOl<sup>te</sup>
:om <gk>tou=</gk> Cyr <it>Ad</it> 232<sup>P</sup> Iust <it>Dial</it> LIX 1 LX 4 Sa
| tou= ba/tou]</gk>
+< (^ 64 Arm<sup>mss</sup> Syh) <gk>mesou</gk> <it>O</it><sup>-72</sup>-64<sup>mg</sup> 128 Arm Syh
+<gk>tou mesou b</gk> 630
+<gk>tw</gk> <gk>mwsei</gk> Or III 135
| o\ra]
: <gk>ewra</gk> 53`-56*-246 Arm
: <it>vidit moyses (> R) Aeth
+<gk>Mwushs</gk> DialTA 77
+<gk>mwshs</gk> Or III 135
|om <gk>oti</gk>] > 458
| o( 1 (0) -- puri 2 (0)] in rubo orderet ignis</gk> Aug <it>Trin</it> II 23
| o\ 1 (0) ]</gk>
: <gk>h</gk> F<sup>b</sup> 72 52`-126-131<sup>c</sup>-313`-552<sup>mg</sup> 537 527 76 Chr IV 680 X 73 DialTA 77 == Ald Compl
:] > 708 59
| kaietai]
: <gk>ekaieto</gk> 135(1 (0))-376 56` Chr IV 680 X 73 Cyr <it>Ad</it> 232 937 (sed hab <it>Gl</it> 413 X 781) DialTA 77 <sup>Lat</sup>Quodv Haer IV 22 Arm Bo == Compl
: <gk>ekaietw</gk> 376
:post <gk>puri</gk> 2 (O)] (~)527(~)
| om <gk>puri) 2 (0)] DialTA 77
| o( 2 (0) -- fin]
+<gk>kai ou katekaieto (<gk>katakaietai</gk> 53` Phil) 53` 76 Phil III 145 Chr IV 680 X 73
:] > 799
|
<gk>o( de]
+<gk>kai</gk> o</gk> Or III 135 Bo
: <gk>kai</gk> 1<h</gk> 72
: <gk>h</gk> de F<sup>b</sup> 126-131<sup>c</sup>-552<sup>mg</sup> 527 DialTA 77 == Ald Compl
+<gk>o</gk> 54
| ou/ katekai)eto]
: <gk>oukekatekaieto</gk> (litt <gk>t</gk> 1 (0) ex <gk>i</gk> corr) 59
: <gk>ou</gk>
: <gk>katakaietai</gk> 72 126 458 Or III 135 Syh(vid)
: <gk>katakeetai</gk> 458
3
init -- <gk>Mwush==s]
<gk>o</gk> <gk>de</gk> <gk>mwshs
<gk>eipe</gk>
Iust <it>Dial</it> LX 4
: <gk>kai eipen en eautw</gk> 799
: <gk>kai eipen mwushs</gk> Carl 49 <sup>Lat</sup>Aug <it>Trin</it> II 23 Cyp <it>Quir</it> II 19 Quodv <it>Haer</it> IV 22
|: <gk>mwshs</gk> 64*-72-135-426 <it>C</it>`"<sup>-25</sup> 106-107*(c pr m) <it>n</it><sup>-628</sup> <it>x</it> 424
: <gk>mwusshs</gk> 68`
|<gk>parelqw/n]
: <gk>elqwn</gk> 126
: <gk>diabas</gk> Cyr IX 1128 (sed hab passim) GregNys VII 9
+<gk>dh</gk> 426 == <9M>9
| to( orama]</gk>
+<<gk>ti</gk> 73
:] > Bo<sup>B</sup>
| o(/rama to\ me/ga]
: <gk>mega orama</gk> Cyr IX 1129 (sed hab passim) GregNys VII 9 <sup>Lat</sup>Cyp <it>Quir</it> II 19</gk> Quodv <it>Haer</it> IV 22
|om <gk>to/</gk> 2 (0)] -- (.4) idei=n</gk> 6l8<sup>txt</sup>
| to\ mega] > <sup>Lat</sup>Cassiod <it>Ps</it> CXXVIII 8 Hil <it>Ps</it> CXXVIII 12 Ruf <it>Gen</it> XII 2 Sa<sup>txt</sup>
:post <gk>tou=tol</gk> (~)72 54 <it>n</it><sup>-628</sup> Iust <it>Dial</it> LX 4 <sup>Lat</sup>cod 101 Aug <it>Trin</it> II 23 Or <it>Matth</it> 90 Arm<sup>te</sup>(~)
| ti o(/ti]</gk>
+<<gk>pros</gk> Carl 49
: <it>propter quid</it> Bo Syh
:om <gk>ti)</gk>] > B 58-376-<it>oII</it><sup>-135</sup> <it>b</it> 129-246 <it>x</it> 68`-120` 55* Cyr <it>Ad</it> 232<sup>PV</sup> <it>Gl</it> 413<sup>FP*</sup> X 781 (sed hab <it>Ad</it> 937 <it>Gl</it> 416) Iust <it>Dial</it> LX 4 <sup>Lat</sup>codd 100 101
|ou -- fin] <it>arderet hoc arbor et non combureretur</it> Bo<sup>A<sup>txt</sup></sup>: cf .2;
| ou] > 509
| katakaietai]</gk>
: <gk>katekaieto</gk> <it>d</it><sup>-106</sup> 134-370 <it>x</it>
: <gk>katakaieto</gk> 134
| o ba/tols] h batos F<sup>b</sup> 72-135* (1 (0)) 126-131<sup>c</sup>-552<sup>mg</sup> 527 76 130 509 == Ald Compl
: <it>rubus hri</it> <sup>Lat</sup>codd 100 101
:om <gk>o(</gk>] > 55*
4
om <gk>w(s]
> 619*
| ku/rios 1 (0)]</gk>
+<<gk>o</gk> 82 56` 130 Cyr X 781 (sed hab passim)
: <gk>Qs</gk> Carl 49 == Sam
:] > Eus VI 236 (sed hab 241 II 18) <sup>Lat</sup>cyp <it>Quir</it> II 19
ms:parabl. 2 (0) 376
|<gk>prosa/gei]
: <gk>proagei</gk>72 25-414`-615 44 53`-129 75 127 619 Tht <it>Ex</it> 101<sup>ap</sup> == Compl
: <gk>prwagei</gk> 75
: <gk>prwagh</gk> 129
: <gk>parhl</gk>[<gk>qen]</gk> Carl 49
+<it>moyses</it> Aeth<sup>M</sup> == Tar<sup>P</sup>
| i)dei==n]</gk>
:[<gk>id</gk>]<gk>wn</gk> Carl 49
:] > Bo<sup>A<sup>txt</sup></sup> Sa
|</gk> om <gk>au)to/n</gk>] > F* (c pr m) 509
| ku)rios 2 (0)]
: <gk>kn</gk> 78*
: <gk>o Qs</gk> Carl 49 Phil III 246<sup>ap</sup>^^
:] > 618 106 75 619 Cyr <it>Ad</it> 233 (sed hab passim) Eus VI 236 (sed hab 241 II 18) Tht <it>Ex</it> lOl<sup>ap</sup>
+<it>deus</it> <sup>Lat</sup>Cyp <it>Quir</it> II 19 Aeth<sup>-M</sup>
| e/k]</gk>
+ (^ 64) <gk>mesou</gk> <it>O</it><sup>-72</sup>-64<sup>mg</sup>(vid) 128` Eus VI 236 241 (sed hab II 18) Arm Syh == <9M>9
| tou=]
: <gk>ths</gk> F<sup>b</sup> 72-376 131<sup>c</sup> 106 75 527 76 Phil III 246<sup>ap</sup> HymenHier 17 Iust <it>Dial</it> LX 4 Tht <it>Ex</it> lOl<sup>ap</sup> == Ald Compl
|<gk>legwn</gk>]
+: <gk>kai eipen</gk> 129 Carl 49 == Compl <9M>9
] > Hil <it>Trin</it> IV 32
| Mwush== Mwush==]
: <gk>mwsh mwsh</gk> 72-82*-135-426 78-126 2<sup>-44</sup> <it>n</it> 799 Phil III 246<sup>ap</sup>;...]
: <gk>h mwsh</gk> Carl 49
: <gk>mwussh mwussh</gk> 68`
: <gk>mwsh</gk> 52`-761;
semel scr 313 53`
|</gk> om <gk>o</gk> -- fin] > 318
| <gk>o de eipen</gk>]
:+<gk>kai eipen Mwushs</gk> 500
| o( de/]
: <it>ad</it> <it>ille</it> <sup>Lat</sup>codd 100 101
:] > Aeth<sup>MP</sup>
| ti e)stin]
: <gk>idou egw</gk> Carl 49^^
+<gk>kurie</gk> <it>z</it> 130 Cyr <it>Gl</it> 413<sup>P</sup> (sed hab passim) <sup>Lat</sup>Quodv <it>Haer</it> IV 23 Aeth<sup>C</sup>
5
<gk>kai)
eipen]
: <gk>o de eipe</gk>(<gk>n</gk>) B M<sup>mg</sup> 15` 56`-129 <it>z</it> 799 == Compl
+<gk>o de ks <gk>eipen</gk> 130
+<gk>eipe(n)</gk> de <it>b</it>
+<gk>eipen de pros auton</gk> 55 Sa
+<gk>eipen de autw o kurios</gk> Act 7:33
+<gk>autw</gk> 126 53` Aeth Arab
+<it>ille dns (ds 101) <sup>Lat</sup>codd 100 101 Quodv <it>Haer</it> IV 23<sup>te</sup>
+<it>ad eum dns</it> Quodv <it>Haer</it> IV 23<sup>ap</sup>
+<gk>ks</gk> 527
| mh/ e)ggishS wde]
: <gk>mh engishs [su]n arPagh,i,</gk> Carl 49
| lu=sai]
: <gk>luson</gk> 72-618 <it>b</it> 121-527 <it>z</it> 55 Carl 49 Act 7:33
: <gk>upolusai</gk> Epiph I 142 Iust <it>Apol</it> LXII 3 ^^
| to( u\po/dhma]
: <gk>ta upodhmata sou</gk> Carl 49 Epiph I 142 Iust <it>Apol</it> LXII 3 <sup>Lat</sup>Quodv <it>Haer</it> IV 23<sup>te</sup> Aeth Arm == <9M>9<sup>L</sup> Sam Tar<sup>P</sup>
(sub ^ Arm<sup>mss</sup>; > Epiph Quodv)
+ (^ Syh) <gk</sup>ou</gk> 58<sup>mg</sup>-135-376`-618 Syh == <9M>9<sup>mss</sup> Tar<sup>O</sup> ^^
| om <gk>e)k tw==n podw=n</gk>] > Caes <it>Serm</it> XCV 3 Hi <it>Ad Iovin</it> I 21 <it>IohCass <it>Inst</it> 9.2 Or <it> Reg</it> I 6 Ruf <it>Ios</it> VI 3
| e)k]
: <gk>apo</gk> 75 Carl 49
:] > 72-707-708 77 71* Act 7:33
|<gk>e)n w]
: <gk>ef w</gk> 130 Act 7:33: cf</gk> Ios 5:15
: <gk>on</gk> Cyr X 781 (sed hab passim)
|<gk</sup>u</gk>] > A 707 126 118`-537 106 53` 121 Carl 49 Act 7:33 Aeth<sup>R</sup> Bo
| e)/sthkas]
+<gk>en autw</gk> 628
+<gk>ep autw</gk> Eus V II 236
+ (^ Arm<sup>mss</sup> Syh) <gk>ep autou</gk> <it>O</it><sup>-72</sup> Carl 49 Eus II 18 VI 241 Arm Syh ^^
| gh== a\gia]
: <gk>agios</gk> 53` Phil III 145<sup>ap</sup> Tht <it>Ios</it> 276<sup>te</sup> : cf Ios 5:15 ; <gk>topos agios</gk> Tht <it>Ios</it> 276<sup>ap</sup>
6
init -- <gk>au/tw=|]</gk>
+<<gk>kai eipe mwushs tis ei su</gk> 53`
+<gk>eipe de autw</gk> 72
: <gk>autw=|</gk> sub Syh
:om <gk>autw</gk>] > B 15`-707 56* 55 799 Carl 49 Cyr <it>Gl</it> 468 (sed hab 413 X 781) == <9M>9
] > 77
|</gk> om <gk>eimi</gk> 761 Marc 12:16 Act 7:32
| o -- sou]</gk>
+< ks 527 Bo<sup>B</sup>
:om <gk>o\</gk>] > 618 54* 59
] > Matth 22:32 Marc 12:26
| tou patro/s sou]
: <gk>twn prwn sou</gk> 58` 84 Carl 49 Act 7:32 Aeth<sup>CG</sup> Bo == Sam
:] > 56*
:post <gk>`Abraa/m</gk> (~)<it</sup></it>(~)
|</gk> om <gk</sup>ou</gk>] > 135*
|<queo/s</gk> 2 (0)]
+<pr <it>o</it> A 15-64*-72-376 <it>C</it>`"<sup>-54</sup> <it>b</it> 106 <it>n</it> <it>x</it> 121-527 <it>z</it> 18 76 130 424 509 799 Matth 22:32 Marc 12:26 Act 7:32
:] > 135 54 107`-125 <it>f</it> <it</sup></it> Sa
|`Abraa/m]
: <gk>abram</gk> 376*
+ ras ca 10 litt 131
| kai) 2 (0)]</gk> +< Syh<sup>T</sup>
:sub Syh<sup>L</sup> == M<sup>L</sup> Tar
| Qeo/s</gk> 3 (0)] A B F M 29`-58-82-426-<it>oI</it> 44 <it>t</it> 318` 55 59 319 Marc l2:26<sup>te</sup> Act 7:32<sup>ap</sup>
] > 72 422 107`-125 <it>n</it><sup>-458</sup> 619 76 799 Act7:32<sup>te</sup>
+< <it>o</it> Carl 49 Matth 22:32 Marc 12:26<sup>ap</sup> Act 7:32ap rell
| <gk>i,s,saak</gk> Carl 49
| Qeo/s 4 (0)] A B F M 29`-58-82-426-<it>oI</it> 19 44 <it>t</it> 318` 55 59 319 Marc 12:26<sup>te</sup> Act 7:32<sup>ap</sup>]
] > 72 422 107`-125 <it>n</it><sup>-458</sup> 619 799 Act 7:32<sup>te</sup>
:+< <gk>o</gk> Carl 49 Matth 22:32 Marc l2:26<sup>ap</sup> Act 7:32<sup>ap</sup> rell
| )Iakw(B]
: <gk>iak</gk> 413*
| a\pe/streyen de]
+<gk>kai apestreye</gk> Anast 129
: <gk>kai ap,[e]kruyen</gk> Carl 49
| a\pe)treyen]
: <gk>epestreyen</gk> 72 76`
: <gk>apekruye</gk> 458 ^^
| de)]
: <it>enim</it> <sup>Lat</sup>cod 100
| : <gk>mwshs</gk> 72-135-426-<it>oI</it> <it>C</it>`" <it>d</it><sup>-106</sup> <sup>n</sup> 121 424 Carl 49,
: <gk>mwusshs</gk> 68`
|</gk> om <gk>au\tou</gk>] > 376 Phil III 140
| eu/labeitol]
: <gk>hulabeito</gk> M 15`-58-64` <it>C</it>``<sup>-739</sup> <it>x</it> <it>z</it> 18 55 76 424 Anast 129 Cyr passim Tht <it>Ex</it> 101
: <gk>hblabeito</gk> 76
: <gk>efobhqh</gk> Carl 49 == <9M>9
: <it>pudefactus est</it> Syh<sup>mg</sup>
|</gk> om <gk>ga/r] > <it>d</it> 799
| katemble)yai e)nw(pion]
: <it>intendere</it>
( + in</gk> 101)
<it>faciem</it> <sup>Lat</sup>codd 100 101
| katemble)yai]
: <gk>katableyai</gk> 376-708 <it>C</it>-78-126 19` 610 53`-246 619 68`-120` 55 509 Tht <it>Ex</it> lOl<sup>te</sup>
: <gk>katebleyai</gk> 610 509
: <gk>katebleye</gk> 246
: <gk>anableyai</gk> 130
: <gk>e,[ble]ye</gk> Carl 49
| e)nw(pion --</gk> fin]
sup ras ca 16 |itt 15
:om <gk>tos</gk>] > Tht <it>Ex</it> 101<sup>ap</sup>
7
<gk>eipen
de/]
: <it>et dixit</it> <sup>Lat</sup>cod 101
| ku/rios]</gk>
+<<gk>o</gk> 458
| pro)s Mwush==n]
: <gk>tw mwsh</gk> 458
sub Syh<sup>L</sup> == <9M>9
| Mwush==n]</gk>
sub Syh<sup>T</sup>
: <gk>mwshn</gk> 72-135-426 <it>C</it>`"<sup>-551</sup> 314*<it>d</it><sup>-44</sup> <it>n</it><sup>-458</sup> <it>x</it> 121 424
: <gk>mwusin</gk> 376
: <gk>mwusshn</gk> 68`
|</gk> om <gk>i)dw(n</gk>] > 458
|tou
: <gk>tw law</gk> 458
:om <gk>tou</gk>] > 3l9* (c pr m)
| tou 2 (0)]
: <gk>thn</gk> 319
:] > Iren IV 7.4 (sed hab 12.4)
| th=s</gk> <gk>kraugh=s]
: <gk>ths fwnhs</gk> 72 619
: <gk>tou stenagmou</gk> Act 7:34
| au/tw==n 1 (0)]
: <gk>autou</gk> Act 7:34<sup>te</sup>
:] > 56* 799
| : <gk>hkousa</gk> Act 7:34<sup>te</sup> Tht <it>Ex</it> 102
|</gk> om <gk>a\po/ -- fin] Act 7:34 Arab
| e)rgodiwktw=n]
+ (^ Syh) <gk>autwn</gk> <sup>O</sup> Arm Syh == <9M>9
+ <it>qui affigunt eos</it> Bo<sup>A<sup>mg</sup>B</sup>
|</gk> om <gk>oi)=da -- fin] > 52-126 458
| oida]
: <gk>eidon</gk> 551
| au/tw=n 2 (0)] : <gk>tou laou mou tou en aiguptw</gk> 619: ex praec
8
<gk>e)celesqai]</gk>
+<<gk>tou</gk> F <it>d</it> <it>n</it> 30` <it>t</it> Chr lX 330 339 XVII 190
| au/tou/s 1 (0)]
: <gk>autois</gk> 56
| e)k 1 (0)]
: <gk>apo ths</gk> 628
| <gk>xeirwn</gk> 500* Arm == Tar<sup>P</sup>
| Ai)guptiwn]</gk>
+<<gk>twn</gk> 72-618 57-126 <it>n</it><sup>-458</sup> 619 527 128 Cyr <it>Ad</it> 237 == Ald Sixt
: <gk>aigu<sup>pt</sup></gk> 458
: <gk>ekguptiwn</gk> 30
: <gk>aiguptou</gk> 53
| kai</gk> 2 (0)] -- <gk>e)keinhs]</gk> om <gk>kai</gk>] > 55* Cyr <gk>Ad</gk> 237
:om <gk>e)cagagein au/tou/s</gk>] > 77
post <gk>pollh/n</gk> (~)Aeth(~)
| e)cagagein]
: <gk>ecagein</gk> 78
| au)tou/s</gk> 2 (0)]
+<gk>ek xeiros aiguptiwn kai</gk> 14-131-739: ex praec
| <gk>th=s gh=s e)keinhs</gk>]
: <gk>ths</gk> (</gk> 500) <gk>ghs aiguptou</gk> 500 Sa
| kai ei)sagagein au/tou/s]
: <gk>kai sunagagein autous</gk> 107`-125
:om <gk>kai)</gk>] > 55*
:] > A F M <it>O</it>`<sup>-58</sup>-29`-135 <it>C</it>`"<sup>-57</sup> 56<sup>txt</sup> <it</sup></it> 121` 18 59 130 509 799 Cyr 2Ad</it> 237 Arab Bo Syh<sup>L<sup>txt</sup></sup>
| gh=n</gk> 1 (0) <gk>]
+<gk>thn ghn thn</gk> 458
|</gk> om <gk>kai) pollh/n</gk>] > 15 59
| ei)s 2 (0)]</gk>
+<<gk>kai</gk> 414
:] > Bo
| <gk>meli kai gala</gk> (~)72-708 16-126-550` 107`-125 <it>x</it> 799(~)
| to\n to/pon]
: <it>terram</it> Arm == Tar<sup>P</sup>
om <gk>to/n] > 29
| tw=n]
: <gk>ton</gk> 58
:] > 610
| : <gk>xanaiwn</gk> 59
|</gk> om <gk>kai 6 (0)] 106-125 == <9M>9<sup>mss</sup> Sam
|<gk>xettaiwn]</gk>
+<<gk>twn</gk> 72 == <9M>9
+<gk>twn xetgaiwn</gk> 58
: <gk>xetgaiwn</gk> 15-29-64 118` 75 85` 84 128
: <it>chetthaeorum</it> <sup>Lat</sup>cod 101
|</gk> om <gk>kai)7 (0) 8 (0) 9 (0) 10 (0) 106-125
| kai)7 (0)] 9 (0)] </gk> 53
|<gk>`Amorrai)wn -- Eu/ai)wn]
: <gk>euaiwn kai ferecaiwn</gk> (<gk>ferecewn</gk> 246*) kai amorraiwn</gk> 56`-664 130
| <gk>`Amorrai)wn</gk> F F<sup>b</sup>] : <gk>ammorraiwn</gk> 708 44 730 84 55
: <gk>amwrraiwn</gk> 458 30
: <gk>ammoraiwn</gk> 118` 610 799
: <gk>amoraiwn</gk> <it>x</it>
: <gk>amwraiwn</gk> 527
: <gk>aporraiwn</gk> F<sup</sup></sup>
| <gk>ferecai)wn]
: <gk>fercaiwn</gk> 54
:et
<gk>Eu/ai)wn</gk> (~)392(~)
| kai) 9 (0)] ms:parabl. 10 (0) <it>n</it><sup>-628</sup> 68 799
| Eu(aiwn]
: <gk>ebaiwn</gk> 44`-610 59
: <gk>eucheorum</gk> <sup>Lat</sup>cod 100
:et <gk>Gergesaiwn</gk> (~)B 72 Aeth<sup>C</sup> == Ra Sam(~)
| kai) Gergesaiwn</gk> sub Syh
:] > 500 == <9M>9 Tar
| kai)</gk> 10 (0)] ms:parabl (9) 1 (0) 53(||)
| Gergesaiwn]
: <gk>gergessaiwn</gk> 58-708(|)
: <gk>gersaiwn</gk> 135-707
: <gk>gersewn</gk> 246
: <it>gergesseorum</it> <sup>Lat</sup>cod 100
:et <gk>)Iebousai)wn</gk> (~)19` (sed hab Compl)(~)
| kai</gk> 11 (0)] ms:parabl. (9) 6l8<sup>txt</sup>
| )Iebousaiwn]
: <gk>ebousaiwn</gk> 458 59*
: <gk>ieboussaiwn</gk> 56 46
: <gk>ieuousaiwn</gk> 619
: <it>zebusaeorum</it> <sup>Lat</sup>cod 1 00
9
<gk</gk>kraugh/]</gk>
+<<gk>h</gk> F<sup>b</sup> 52-126 <it>f</it><sup>-56*</sup> 75 Cyr <it>Ad</it> 240<sup>P</sup> == Compl
|</gk> om <gk>tw=n] > 59
|</gk> om <gk>)Israh/l</gk>] > 68 (sed hab Ald)
|</gk> om <gk>me</gk>] > F* (c pr m)
| kai) e)gw(] : <gk>kagw</gk> B 15`-58` <it>f</it> <it>z</it> 130799 Cyr <it>Ad</it> 240 == Compl Ra
: <gk>idou egw</gk> 321
| e)gw(/]</gk>
+<<gk>idou</gk> 318
:] > 527 == <9M>9
+<gk>idou</gk> 64<sup>mg</sup>
|<gk>ewra thn qlhyin hn</gk> 126 ^^
| qlimmo/n]
: <gk>qimon</gk> 376
: <gk>qlibonta</gk> 799
+<gk>autwn</gk> 15 246 Aeth(vid) Arab Co ^^ contra <9M>9
| oi) Ai)gu/ptioi]</gk>
om <gk>oi)</gk>] > 14-739 44 53
:] > Arab
| qlibousin]
: <gk>qliboun</gk> l26(vid) 125
: <gk>ekqlibousin</gk> <it>b</it> (sed hab Compl)
: <it>deprimebant</it> <sup>Lat</sup>cod 100
| fin] + <gk>kai ecapolsteilon autous</gk> <it>x</it>
10
<gk>a\postei)lw]</gk>
+<<gk>kai</gk> 44 <sup>Lat</sup>cod 100 Caes <it>Serm</it> XCV 4 == <9M>9
: <gk>apostelw</gk> 72 25* 106 Act 7:34<sup>ap</sup> Bas II 429 432 (sed hab 436) Cyr <it>Ad</it> 240 (sed hab IX 77) Sa ==<9M>9
: <gk</sup>teilw</gk> 422
: <gk>ecaposteilw</gk> 761
: <it>mitto</it> <sup>Lat</sup>cod 101
| pro/s -- Ai)gu/ptou 1 (0)]
: <gk>eis aigupton</gk> Act 7:34
| pro/s]
: <gk>eis</gk> C`"<sup>-126</sup>
| basile)a Ai)gu/ptou]</gk>
+<<gk>kai</gk> 54 :sub Syh == <9M>9
| : <gk>basileus</gk> 75
| Ai)gu/ptou</gk> 1 (0)]
: <gk>aigu</gk> 54*(|) ms:parabl 2 (0) 799 ms:parabl (11) 1 (0) 54-414`
| e)ca/ceis</gk> == Sam Tar<sup>P</sup>
: <gk>ecachs</gk> 313 56`* 458 127*
: <gk>ecagage</gk> Iust <it>Apol</it> LXIII 8 == <9M>9 Tar<sup>O</sup>
: <gk>ecagageis</gk> 72
: <gk>ecareis</gk> 19` (sed hab Compl)
:litt <gk>ec</gk> sup ras 3--4 litt 708
|</gk> om <gk>to\n Iao/n mou</gk>] > Cyr IX 77 (sed hab <it>Ad</it> 240)
| tou\s ui)ou/s]
: <gk>ton</gk> 53` 76`
|</gk> om <gk>e)k</gk>] > 376
| gh=s</gk> == Tar<sup>O</sup>]
: <gk>ths</gk> 707 56* == <9M>9 Sam Tar<sup>P</sup>
|</gk> fin]
+<gk>eipe de o Qs mwsei legwn oti esomai meta sou</gk> 550`*: ex .12
11
om init -- <gk>(12)
le/gwn</gk> 106
|</gk> om comma 125: homoiot
|</gk> om init -- <gk>Ai)gu/ptou</gk> 1 (0)] 392: homoiot
| kai) eipen]
: <gk>eipe(n)</gk> <gk>de</gk> 761 <it>b</it> <gk>n</gk> 527 55 <sup>Lat</sup>cod 100 Sa<sup>3</sup> (sed hab Compl)
:om <gk>kai</gk>] > <sup>Lat</sup>cod 101
| : <gk>mwshs</gk> <it>O</it>`<sup>-376 618</sup> 135 <it>C</it>` 25-313`-422-615 44-107` <it>n</it> 127*
: <gk>mwusshs</gk> 68`
| ton qeo/n]
: <gk>kn</gk> 55 <sup>Lat</sup>cod 100 Aug <it>Loc in hept</it> 11 9<sup>ap</sup> == Tar
:om <gk>to/n</gk>] > 527*
| tis] : <gk>ti</gk> 458
| ei)mi]</gk>
+< (^ Syh) <gk>egw</gk> 58-376 128` Syh ^^
: <gk>ego</gk> <sup>Lat</sup>Aug <it>Loc in hept</it> 11 9 Aeth Bo
+ (^ Arm<sup>ms</sup>) <gk>egw</gk> A<sup>c</sup> B F<sup>b</sup> 15`-72-135*-426-<it>oI</it> 126-550` <it>b</it> <it>n</it><sup>-628</sup> 527 55 130 509 ClemR XVII 5 Cyr <it>Ad</it> 240 Tht <it>Ex</it> 112 II 500 <sup>Lat</sup>cod 100 Arm Sa == Ald
| o(/ti</gk> 1 (0)]
: <gk>tou</gk> 126
| poreu/somai]
: <gk>poreuomai</gk> 121 == Compl
: <gk>me pempeis</gk> ClemR XVII 5
| faraw(]</gk>
+<<gk>ton</gk> Tht <it>Ex</it> 112<sup>ap</sup>
: <gk>farw</gk> 761
:] > 77
:et <gk>basile)a</gk> (~)458(~)
| basile)a Ai)gu/ptou]</gk>
sub Syh
:] > Bas II 437 (sed hab 429) == <9M>9
| Ai)gu/ptou 1 (0)] ms:parabl. 2 (0) <it>C</it>-78-761 44 458
|</gk> om <gk>kai</gk> 2 (0)] 59 <sup>Lat</sup>codd 100 101
|om <gk>o(/ti 2 (0)] 29 126 Bas II 429 (sed hab 437) Cyr <it>Ad</it> 240<sup>R</sup> <sup>Lat</sup>Aug <it>Loc in hept</it> II 9 Arm
| : <gk>ecaceis</gk> 107*
| tou/s --</gk> fin] <it>e terra aegypti populum</it> Sa<sup>3</sup>
| tous ui)ou\s Israhl]
: <gk>ton Iaon</gk> Bas 11 429 437
| e)k --</gk> fin] sup ras 56
| e)k gh==s]
: <gk>ec</gk> 426 75 == <9M>9
<gk>ek ths</gk> 707 59
+<gk>ec</gk> M 18
12
om init -- <gk>Ai)gu/ptou</gk>
<it>x</it> homoiot
| init -- <gk>le/gwn]
+<it>tunc dixit illi dns</it> <sup>Lat</sup>cod 100
|</gk> om init -- <gk>Qeo/s</gk> l2l<sup>txt</sup>
| eipen de/]
+<gk>kai eipe</gk>(<gk>n</gk>)</gk> 392-527
: <gk>apekriqh de</gk> <it>b</it> (sed hab Compl)
+<gk>autw</gk> 126 121(<sup>mg</sup>) <sup>Lat</sup>cod 101 Aeth
| o( -- le/gwn]</gk>
+<<gk>kurios</gk> 246
] > A F M<sup>txt</sup> 29-64<sup>txt</sup>-135-708 318 59 76` 509 Arm Syh<sup>txt</sup> == <9M>9
| o( Qeos Mwush=|]
: <gk>o Qs pros mwushn</gk> 129
(litt <gk>o Qs pr</gk> sup ras)
:] > Bo<sup>A</sup>
| o\ Qeo/s]
: <gk>kurios</gk> 707 <it>b</it> <it</sup></it> 392-527 130 <sup>Lat</sup>Arnob <it>Confl</it> I 16 Aeth (sed hab Compl)
] > 53* (c pr m)
|</gk> om <gk>Mwush=| le)gwn</gk> 121 <sup>Lat</sup>cod 101 Aeth
| : <gk>Mwush=|</gk> M<sup>mg*</sup>) 15`-376 53<sup>c pr m</sup>-56-664 == Sixt]
+<<gk>pros</gk> 58 246 527*
+<<gk>tw</gk> 128` 799
+<gk>to</gk> 68` 72 120` 130
+<gk>pros</gk> <it>b</it> 44-125 <it</sup></it> <it>t</it><sup>-46<sup</sup></sup></sup> 392-527<sup>c</sup> 55 <sup>Lat</sup>Arnob <it>Confl</it> I 16 Syh<sup>mg</sup> 426 107` 2<sup>-628</sup> 46<sup</sup></sup> 18
: <gk>mwussei</gk> 68`
: <gk>mwsei</gk> 72
: <gk>mwusei</gk> 120` 130
: <gk>mwsei</gk> 57-77-78-414`-550`-615<sup>c</sup>-739-761
: <gk>mwsh</gk> 64(<sup>mg</sup>)-618 14`-25-52-54-73-131-313-413-422-500-615*
: <gk>mwsh mwsh</gk> 126
: <gk>mwushs</gk> 53*
: <gk>mwushn</gk> <it>b</it> 44-125 <it</sup></it> <it>t</it><sup>-46<sup</sup></sup></sup> 392-527<sup>c</sup> 55 <sup>Lat</sup>Arnob <it>Confl</it> I 16 Syh<sup>mg</sup>
: <gk>mwusin</gk> 30
: <gk>mwshn</gk> 426 107` 2<sup>-628</sup> 46<sup</sup></sup>
: <gk>mwsh</gk> 18
: <gk>autw</gk> 707 628
: <gk>mwusei</gk> rell == Ra
| om <gk>legwn</gk>] > 72-707 Bo
| <gk>o(/ti</gk> 1 (0)]
: <gk>kai</gk> 106
: <gk>egw</gk> 318 Arm
:] > Arab
+<gk>ego</gk> <sup>Lat</sup>cod 101
| esomai]
: <gk>ego</gk> (] > R) <gk</sup>um</gk> Aeth
| tou=to/]
+<it>erit</it> Arm Sa<sup>3</sup> == Tar<sup>P</sup>
| soi] > 72 <it>d</it><sup>-106</sup>
post <gk</sup>hmeion</gk> (~)<sup>Lat</sup>cod 100 Aeth Arab Bo(~)
| o(/ti 20]
: <gk>ote</gk> F<sup>b</sup>
| om <gk>e)gw</gk>] > <sup>Lat</sup>cod 101
| se a/poste/llw]</gk>
: <gk>ecapostelw se</gk> 426 799
: <gk>ecapostellw se</gk> 56*
:(~)Co Syh == <9M>9(~)
| a)/poste/llw]
: <gk>apostelw</gk> <it>d</it> 30-344* 121 59* Sa
: <gk>ecapostelw</gk> B 15` 413 <it>n</it><sup>-458</sup>
: <gk>ecapostellw</gk> <it>O</it>`<sup>-426</sup> <it>C</it>`"-126 413 53`-56<sup>c</sup> 458 392 <it>z</it> 76` 130 == Ra
: <it>misi</it> Arm
| e)n 1 (0)] -- se 2 (0)]
: <gk>tou ecagagein</gk> 53` <sup>Lat</sup>cod 100 Arm
| e)cagagein se]
: <gk>ecagagein me</gk> 72
: <gk>ecagein se</gk> 74
: <gk</sup>e ecagein</gk> 78
:om se] > 376 l27 59 Aeth<sup>P</sup> (~)A F M <it>oI</it>-29`-135 <it>C</it>`"<sup>-78</sup> 129 <it</sup></it><sup>-127</sup> <it>y</it> 18 55 76` 509(~)
|<gk>to)n Iao/n / mou]</gk>
om <gk>mou</gk>] > A<sup>txt</sup> M 135-707 l2l<sup>c pr m</sup> 18 76` Syh == <9M>9 (~)53`(~)
+<it>filios
| e)c Ai)gu/ptou]
: <gk>ek ghs aiguptou</gk> 53` 527 76` <sup>Lat</sup>cod 100 Aeth Bo<sup>B</sup> Sa<sup>3</sup>
: <gk>ton en aiguptw</gk> 77
| latreu/sete]
: <gk>latreusate</gk> 131 -414` 76`
: <gk>latreusatai</gk> 319
: <gk>latreushte</gk> 628;
: <gk>latreusai</gk> 72-135 53` <it>n</it><sup>-628</sup>
: <gk>latreuse</gk> 75
: <gk>latreusousi</gk> <it>x</it>
:(latreuswsi</gk> 619
| tw==i Qew==i] <it>mihi</it> Arnob <gk>Confl</gk> I 16
| toutw|] > Sa<sup>3</sup>
+<gk>enxwrhb</gk> 64<sup>mg</sup>
13
<gk>kai)
ei)=pen]</gk> bis scr 54*(||)
| : <gk>mwshs</gk> 72-135-426-<it>oI</it> 52`-1 26-552*-739-761 <it>n</it><sup>-628</sup> 46 799
: <gk>mwusshs</gk> 68`
| to)n Qeo/n]
: <it>dnm</it> <sup>Lat</sup>codd 100 101 == Tar
| e)leu/somai]</gk>
: <gk>eceleusomai</gk> B
: <gk>poreuomai</gk> Cyr X 681
|</gk> om <gk>pro/s 3 (0)] > 500* 85 619
| au/tou/s 1 (0)] ms:parabl. 2 (0)] 799
| o(]
+<<gk>ks</gk> 58-64<sup>mg</sup> <it>f</it><sup>-129</sup> <it>n</it><sup>-628</sup> 30` 85`<sup>mg</sup> 130 <sup>Lat</sup>codd 100 101
|</gk> om <gk>tw=n pate)rwn u/mw=n</gk>] > 53
| pate/rwn]
+<gk>mou kai prwn</gk> 628
| u(mw=n]
: <gk>hmwn</gk> B 82*(c pr m)-376-707 <it>C</it>`"<sup>-16<sup>c</sup> 54*-422<sup>c</sup> 500</sup> <it>b</it> <it>d</it> 56` <it>n</it><sup>-628</sup> 30-127<sup>c</sup>-344<sup>c</sup> 318 <it>z</it><sup>-128</sup> 59 76 Bo<sup>B</sup> (sed hab Compl);
: <gk>mou</gk> 54*] > 527
| : <gk>ecapestalken</gk> 509
|</gk> om <gk>me</gk> 1 (0)] > 343
| uma=s] : <gk>hmas</gk> 707 422* 19<sup>c</sup> 107`-125 75
+<gk>o Qs twn prwn hmwn</gk> 53`
|<gk>erwthsousin</gk>
+<<gk>kai ean</gk> <it>b</it>
+<<gk>kai</gk> <it>O</it>-82 <it>C</it>`" 53-56<sup>c</sup>-129-246 527 128` Aeth Arm Syh == Ald <9M>9
+<<gk>kai ei</gk> 664
+<<gk>ean</gk> <it>x</it> Ath II 213 Cyr VIII 261 (sed hab X 681)
+<gk>ei erwthsousin de</gk> 64<sup>c</sup>
: <gk>erwthswsi</gk>(<gk>n</gk>)</gk> (c var) F <it>b</it> 44 <it>n</it><sup>-628</sup> <it>x</it> 130 Ath II 213 Cyr VIII 261 (sed hab X 681)
| me 2 (0)]
: <gk>moi</gk> 16
| ti</gk> 1 (0)]
: <gk>to</gk> 414* 75 Aeth
| o)/noma]</gk>
+<<gk>to</gk> 15`-58` 19` <it>d</it> 53`-129 458 321 <it>x</it> 76` 509
post <gk>au)tw=i</gk> (~)Epiph III 172(~)
| au)tw=i]
: <gk>autou</gk> 15'-58' -376* 106 53` <it>n</it><sup>-628</sup> Aeth Arm Co == <9M>9
+<it>est eius</it> <sup>Lat</sup>cod 101 <gk>
|</gk> om <gk>ti 2 (0) --</gk> fin] > <sup>Lat</sup>cod 100
14
om comma 6l8<sup>txt</sup>:
homoiot
| kai)eipen 1 (0)] eipe(n) <gk>de</gk> 64<sup>mg</sup> 16 <it>b</it> <it>n</it> 392-527 (sed hab Compl)
:om <gk>kai</gk> <it>C`"</it><sup>-16 73 126 413 414</sup>
| o( Qeo/s]</gk>
+<<gk>ks</gk> <it>C`"</it>
: <gk>ks</gk> 130 Eus VI 236 <sup>Lat</sup>cod 101 Ambr <it>Ep</it> VIII 8 Arm == Tar
: <gk>o kurios</gk> Compl: bis scr 73(|);
+<gk</sup>ou</gk> 75*(vid)
| pro\s Mwush==n] : <it>ei</it> Aeth
+<gk>legwn</gk> B
| Mwush==n]
: <gk>mwusshn</gk> 68` (sed hab Ald)
: <gk>mwusin</gk> 30
: <gk>mwshn</gk> 135-426-618<sup>(mg)</sup> 126 44-107 <it>n</it><sup>-458</sup>
: <gk>mwsh</gk> 458
: <gk>auton</gk> Eus VI 236
| om <gk>e)gw/ -- ei)=pen, 2 (0)] > 72-618<sup>(mg)</sup> 318
| ei)mi]
+<it>deus</it> Arm
| om <gk>kai) eipen</gk> 2 (0)] > <it>C`"</it> Eus VIII 1:385 2:24 Tht <it>Ex</it> 102 Sa
| ou(/tws]
: <gk>tade</gk> Cyr X 681 (sed hab <it>Ad</it> 252) Tht <it>Ex</it> 102
| : <gk>ereite</gk> 82
| tois ui)ois]
: <it>ad filios</it> <sup>Lat</sup>cod 101 == <9M>9<sup>mss</sup> Sam
|<gk>)Israh/l]
+<gk>ks o Qs twn paterwn umwn</gk> 707*: ex 15 ms:parabl. (15) 314 53` 30`-343 74
| me apesteile</gk> Bas I 677
| om <gk>me</gk> M 18
15
> init -- <gk>u(ma=s</gk>
628 46: homoiot
| > init -- <gk>)Israh/l</gk> 125
| kai) eipen]</gk>
<gk>eipe</gk>(<gk>n</gk>) +<gk>de</gk> <it>b</it><sup>(-314)</sup> <it>n</it><sup>(-628)</sup> 392 <sup>Lat</sup>cod 100
: <<gk>kai) 799
| eipen o( Qeo\s]</gk> post <gk>palin</gk> (~)Aeth(~)
|</gk> om <gk>o 1 (0)] -- Mwush=n</gk> 106
| o\ Qeo/s / pa/lin</gk> A B 15` <it>b</it><sup>(-314)</sup> 129 458 <it>x</it> 392 <it>z</it> 130 509 <sup>Lat</sup>cod 101 Bo
om o Qeo/s</gk>] > 527
:om <gk>palin] > 75 <sup>Lat</sup>Spec 134
:tr rell == <9M>9
| o Qeo/s</gk> 1 (0)]
+< <gk>ks</gk> <it>C`"</it>, <it>dns</it> <sup>Lat</sup>cod 100 Spec 134 == Tar
|</gk> om <gk>pros mwushn 72
: <gk>mwshn</gk> 135-426-<it>oI</it> 78-126 <it>n</it><sup>(-628)</sup>
: <gk>mwusshn</gk> 68`
] > outws - Israhl] > 121<sup>txt</sup>
|<gk>ou(/tws]
: <gk>mwushs</gk> lO6*(c pr m)
| tois uiois Isrh/l]
: <gk>pros autous</gk> 106
|om <gk>o</gk> 2 (0)] > 76(|)
|<gk>Qeo/s 2 (0)] ms:parabl. 3 (0) 53`
| u(mw=n]
: <gk>hmwn</gk> 58-82 52-73`-77-126-414`-550`-761* 19 <it>d</it><sup>-44<sup>c</sup></sup> 246 75 127-344<sup>c</sup> 68`-120` 59 76` 799 == Sixt
] > 458
: ms:parabl. (16) 54-414` 55
| Qeo/s 3 (0)]--Iakwb]</gk>
+<<gk>o</gk> 15`-58-64<sup>txt<sup>c</sup> et mg</sup>-135-376-707 <it>C`"</it><sup>(-54 414`)</sup> <it>b</it> 56`-129 75` 85` <it>x</it> <it>y</it><sup>-318</sup> <it>z</it> 18 59 130 509 799
|om <gk>Qeo/s 3 (0)] > 107`-125
] > Aeth
| kai) Qeos</gk> 1 (0)] > <gk>kai</gk> 19` 527 799 Phil IV l2<sup>ap</sup> (sed hab Compl) == <9M>9 Tar
: > <it>d</it><sup>-106</sup>
| Qeos 4 (0)]</gk>
+<<gk>o</gk> 15`-64<sup>mg</sup>-135-376-707 <it>C`"</it><sup>(-54 414`)</sup> <it>b</it> <it>i</it> <it>n</it><sup>-628</sup> 85 71 <it>y</it><sup>-318</sup> <it>z</it> 59 130 509 799
] > 619
|] om <gk>kai</gk> 3 (0)] > 19 799 Phil IV l2<sup>ap</sup>
| Qeo/s</gk> 5 (0)]
+<<gk>o</gk> 15`-64<sup>mg</sup>-135-376-707 <it>C`"</it>(-<sup>(-54 414)</sup> <it>b</it> <it>f</it>
<it>n</it><sup>-628</sup> 85 71 <it>y</it><sup>-318</sup> <it>z</it> 18 59 130 509 799
] > <it>d</it><sup>-106</sup> 619 <sup>Lat</sup>cod 100
|om <gk>a\pe)stalke)n -- umas</gk>] > Arab Bo<sup>B</sup>
: <gk>apesteile</gk> <it>b</it><sup>-19</sup> (sed hab Compl)
|<gk>touto</gk> +<<it>et</it> <sup>Lat</sup>cod 100
<gk>touton</gk> 30
| mou/]
: <gk> moi</gk>
(: <gk>mh</gk> 458)
<it>C</it>-422 53` <it>n</it> 30 Bas I 684 II 240 Or IV 69 X 700 (sed hab 701) Tht <it>Ex</it> 102 III 764 <sup>Lat</sup>cod 100 Aug passim Or <it>I Reg</it> I 11 Spec 134
:] > 72 Phil III 158<sup>ap</sup>
:post <gk>onoma</gk> (~)426 Arm == <9M>9(~)
| e)stin</gk> sub Syh
:] > Bas I 684 Tht <it>Ex</it> 102 III 764 == <9M>9
post <gk>onoma</gk> (~)Phil IV 12 <sup>Lat</sup>codd 100 101 Aug passim Or <it>Matth</it> XVII 36 Spec 134(~)
| onoma -- mnhmosunon]</gk>
+<<gk>to</gk> 82 Cyr <it>Ad</it> 252<sup>PV</sup> X 681 (sed hab VIII 953 964) Or IV 69 (sed hab I 42 X 701 (1 (0)) == Compl
: <gk>mnhmosunon aiwnion</gk> Or IV 701(2 (0))
| aiwnion]</gk> post <gk>mnhmosunon</gk> (~)Cyr VIII 953 964 <gk>X</gk> 681(~)
| genew=n geneais]
<it>in generatione et in saecula saeculorum</it> <sup>Lat</sup>cod 100
:(~)72-376 413-761 <it>b</it> 44 53` 628 318-527 Cyr VIII 953 (sed hab 964 X 681) Or I 42 Tht III 764 <sup>Lat</sup>cod 101 (sed hab Compl) == <9M>9 Tar<sup>P</sup>(~)
:om <gk>genew==n</gk>] > A
|<gk>geneais]
: <gk>geneas</gk> 126 <sup>n</sup><sup>-458</sup>
: <gk>geneseis</gk> 799
:] > Tht <it>Ex</it> 1O2<sup>ap</sup>
16
<gk>e)lqw(]
n -- ui)w==n]</gk> sup ras A <gk>
| eiselqwn sunagagwn</gk> HymenHier 17 <gk>
| e)luw(n</gk>
<gk>oun] kai elqwn</gk> 126 <gk>
| apelqwn x
| ou)==n fanid Fb]</gk> sub * 64<sup>mg</sup>
<>:de <it>b</it> 458 Aeth Syh(sed hab Compl)
<>: <gk>></gk> A <gk>F M o/-64<sup>mg</sup>-29`-</gk>135 <gk>C``-(54) 1 ( ) s-</gk> 121 18 130 5091 ust <gk>al LlX</gk> 2 Bo <gk>
| suna/gage] sunage</gk> 392
: <gk>agage 59
:-gagete</gk> 313`-61
5 1 25
Latcodd 91 94--96 <gk>
| th(n gerousian]</gk> pr <gk>omnem</gk> Arab
: <gk>omnes maiores natu>
1 <sup>Lat</sup>cod
100
: <gk>omnes seniores</gk> <sup>Lat</sup>cod 101 <gk>
| tw==n ui)w==n</gk> == Sam] sub%- Syh
:om <gk>tw==n
</gk> b-<gk</gk>9</gk> (sed
hab Compl)
: <gk>> d t</gk> Iust <gk>Dial LIX</gk> 2 Aethc == <9M>9 Tar <gk>
| e)reis] eipe</gk> 5
3 <gk>
|</gk> om <gk>pro/s</gk>
343 <gk>
|</gk> om <gk>ku/rios</gk> AethM SyhT <gk>
| o( -- u/mw==n]</gk> post <gk>moi</gk> tr Ath 11 7
85 <gk>
| u/mw==n] hmwn</gk>
72-82 <gk>C-500--</gk>52-78-126-761 19 107`-125 53`-246 n-<gk>628</gk> 127-344c 68`-120 59
76 509
<gk>799</gk> Ath 11 785 HymenHier 17 == Sixt
: <gk>mou</gk> 44
: <gk>></gk> 392 <gk>
| wfqh</gk> 53` 318
Ath 11
785 Iust <gk>Dial LIX</gk> 2 <gk>
| Qeo/s 20 --)Iakw(b]</gk> pr <gk>o</gk> 707 <gk>C`` bf-129 n</gk>
30 <gk>x</gk> 121-527 <gk>z</gk>
130 <gk>799</gk> Carl 49 Ath 11 785 HymenHier 17 Iust <gk>Dial LIX</gk> 2
: <gk>></gk> 72 106(
|)
<gk>
| kai)</gk>
<gk>Qeo/s 10]</gk> om <gk>kai)527 799
:></gk> 125 == <9M>9 Tar <gk>
| Qeo/s 30]</gk> pr <gk>o</gk> 707
<gk>C - bf-129</gk> n
30` 71 121-527 <gk>z</gk> 130 <gk>799</gk> HymenHier 17 Iust <gk>Dial LIX</gk> 2 (sed hab Compl
)
: <gk>></gk>
126 619 Ath <gk</gk>1</gk> 785 == Sam <gk>
| I)saa/k] isaaak</gk> 57
: <gk>et)Iaka~</gk> tr 54*
: <gk>+>
1 spat ca 10
litt4l3 <gk>
|</gk> om <gk>kai 30 799
| Qeo/s4O]</gk> pr <gk>o</gk> 707 <gk>C``-126 bf-129</gk> n 30,
71 121-527 <gk>z</gk> 130
<gk>799</gk> HymenHier 17 Iust <gk>Dial LIX</gk> 2 (sed hab Compl)
<>: <gk>></gk> 126 125 619 Ath 11785 == <9M>9 <gk>
| e)pe/skemmai] episkeyomai</gk> 761 <it>b</it> 628 <sup>Lat</sup>cod 1 01 Armte (sed hab
Compl)
: <gk>episkeptomai</gk> Iust <gk>Dial LlX</gk> 2
: <gk>episkeyetai</gk> 53` <gk>799</gk> == Tarp
: <gk>epeskeyen</gk>
59 <gk>
| u/ma==s] ^(17) C
|</gk> om <gk>kai) 40 59</gk> Aeth <gk>
|</gk> om <gk>o(/sa -- (17) ei)==p
a</gk> 628 <gk>
| o(/sa] vidi</gk>
<gk>omnia quae</gk> Bo
: <gk>+ soli 319*
| u/min]</gk> pr <gk>en</gk> 54 <gk>
| Ai)gu/ptwi]</gk> pr <gk>
th 59;</gk> pr <gk>gh</gk> 15` 53 -
56c-129 Aeth Arab Sa
: <gk>+ ewraka 19,</gk>
3.17
<gk>kai
ei)==pa]</gk> om <gk>kai)</gk> BoB
: <gk>></gk> 53` <gk>59*
| ei)==pa</gk> A <it>b</it> 392] <gk>eipe
n</gk> <it>b</it> 15`-
5 - 18-707-708 126-422 107`-125 56`-129 318 <gk>z</gk> 55 509 <gk>799
:dico</gk> Arm
:eip
458;
<gk>eipon</gk> (-<gk>pwn</gk> 75) rell == Ra <gk>
| a\nabiba/sw] anabibw</gk> (-<gk>bhbw</gk> 458) <gk>n
:-bibasai</gk> (-bhb.
<gk>58*-</gk>72-135 30) <gk>0-426-29-</gk>135* <gk</sup></gk> 55
: <gk>anacw</gk> Carl 49 <gk>
| e)k ths kak
w(sews] e carcere</gk>
Bo <gk>
| th==s kakw(sews]</gk> pr <gk>ths ghs</gk> 75 Arm
: <gk>(tou] skulm[ou]</gk> Carl 49
: <gk>+
umwn</gk> 75 <gk>
|</gk>
<gk>ei)s 10 ]</gk> pr <gk>kai eisacw umas</gk> <it>b</it> (sed hab Compl)
:pr <gk>etfaciam ascendere
nos</gk> Aeth <gk>
|</gk>
om <gk>th/n</gk> 628 <gk>
| tw==n xananaiwn] tolu xana[...</gk> Carl 49 == <9M>9 Sam
: <gk>twn x
ananwn</gk>
458*
:om <gk>tw==n</gk> 125 == Compl <gk>
|</gk> om <gk>kai) 20</gk> 44`-125 <gk>799</gk> == Sam <gk>
| xet
tai)wn]</gk> pr
<gk>twn</gk> 25
: <gk>xetgaiwn</gk> 1 5-<gk</it>9*-58-</gk>64 85` 84 128
: <gk>eqqaio[ u]</gk> Carl 49
: <
1chetthaeorum</gk>
Latcod 1 01 <gk>
| kai) 30 -- )Iebousai)wn] kai amorr. kai fereZ kai iebous. kai ge
rgesewn</gk>
<gk>kai ebaiwn</gk> 75 <gk>
| kai) 30 -- Gergesai)wn] kai amorr. kai gerges;</gk> (-<gk>gesew
n</gk> 537) <gk>kai fe-</gk>
<gk>reZ kai euaiwn</gk> <it>b</it> <sup>Lat</sup>cod 101 <gk>
| kai) Eu/ai)wn]</gk> om <gk>kai)44`-</gk>125 <gk>799;</gk>
post <gk>fereZai)wn</gk> tr
58`-707 628 30` <sup>Lat</sup>cod 100 == <9M>9 Tar
:post <gk>Gergesai)wn</gk> tr A <it>b</it> 15`-426 129
<gk>x z</gk>
Carl 49 Arm Syh == Compl Ra Sam
: <gk>post)Iebousaiwn</gk> tr 376
: <gk>></gk> Sa <gk>
| Eu\ai)w
n]</gk>
<gk>euaiou</gk> Carl 49 == <9M>9 Sam
: <gk>eucheorum</gk> <sup>Lat</sup>cod 1 00
: <gk>ebaiwn</gk> 125 664 71
59 <gk>
|</gk> om
<gk>kai) 40</gk> 50 60 44`-1 25 <gk>799
| `Amorrai)wn] ammorr;</gk> 761 84
: <gk>ammoraiwn</gk>
126-422 44
55 <gk>799
:amoraiwn</gk> 71
: <gk>amwraiwn</gk> 527
:-<gk>rreou</gk> Carl 49 == <9M>9 Sam
:et <gk>
fereZai)wn</gk> tr
<gk>f-129</gk> 392 130 <gk>799
| fereZaiwn] feresaiwn</gk> 414-551 *(vid) Bo
: <gk>feressaiwn
</gk> 708,;
-<gk>Zaiou</gk> Carl 49 == <9M>9 Sam
:et <gk>Gergesai)wn</gk> tr <gk</sup>-30
| kai) Gergesaiwn]>
1 sub%- Syh ====
<9M>9 Tar
:post <gk>)Iebousaiwn</gk> tr <sup>Lat</sup>cod 1 00 <gk>
| Gergesai)wn] gerssaiwn</gk> 246;
<gk>gers.</gk> 53
458 == Ald
: <gk>gergess. 58</gk> <sup>Lat</sup>cod 1 00
: <gk>gersesaiwn</gk> 527
:-<gk</sup>aiou</gk> Carl 49 ==
Sam <gk>
|</gk>
om <gk>kai)</gk> 70 -- <gk>(18) h(ma==s</gk> Arabtxt <gk>
|</gk> om <gk>kai) 70</gk> 44 <gk>
| )Iebousai)
wn] iebouss.</gk> 761 56 46;
<gk>ieuousaiwn</gk> 376
: <gk>ieubousaiwn</gk> 458
: <gk>zebusaeorum</gk> <sup>Lat</sup>cod 1 00
:-<gk</sup>eou</gk>
Carl 49 == <9M>9 <gk>
|</gk>
<gk>meli kai gala</gk> 72 125-610 74 <gk>x</gk>
<gk</gk>8</gk> om ~nit -- <gk>)Israh/l</gk> 53 <gk>
| eisakousetai</gk> 72
: <gk>eisakousontes</gk> 30
<gk>
| sou] soi 82;</gk>
post <gk>fw~s</gk> tr 426 Carl 49 <sup>Lat</sup>codd 100 101 Aug <gk>Loc in hept 11</gk> 11 Arm Syh ==
<9M>9 <gk>
|</gk>
<gk>fwnh==s] + twn uiwn</gk> Ald
: <gk>+ legei kurios 68`-</gk>120` <gk>
| eiseleuseis</gk> 527 <gk>
| h/ gerousi)a]</gk>
<gk</sup>unaitoi</gk> Carl 49 <gk>
| )Israh/l]</gk> pr <gk>toulaoiJ</gk> 376*
:pr <gk>twn (></gk> 58) <gk>u
iwn F 58`</gk> 619 527
Arm Sa: ex <gk</sup>6;</gk> pr <gk>in</gk> <sup>Lat</sup>cod 100
: <gk>></gk> 628 76 <gk>
| faraw(] faran 58*
:ton
</gk> d <gk>n t
:> F</gk>
<gk>M 29`-</gk>72-135-426-<gk>o/ C`` s y-392 18 59</gk> 509 Aeth Arab Bo Syh == <9M>9 <gk>
|
basilews</gk>
246 <gk>
| kai 40 -- au/to/n]</gk> bis scr 59 <gk>
| ereite (eritai</gk> cod) Carl 49 == ML S
am Tar <gk>
|</gk>
<gk>pro/s au/to/n] ei</gk> <sup>Lat</sup>cod 101
: <gk>ad eos</gk> Armap <gk>
| o(</gk> A <it>b</it> 15` <gk>f</gk> 392 <gk>
799</gk> Bo] pr ~ Cyr <gk>Ad</gk>
233 <it>Gl</it> 5 1 6 rell == <9M>9 <gk>
| E)brai)w n] aibr.</gk> 376*
: <gk>p~r n-</gk> 707 <gk>
| p
roske/klhtai ] epikekl.</gk>
64<sup>mg</sup> <gk>
| h/ma==s] umas</gk> 1 26-55 1 <gk>*</gk> 1 06* 664 458 527 <gk>799
| poreusa~ueqa -
- h/merw==n]</gk>
post <gk>e)/rhmon</gk> tr 509 <gk>
| poreusaueqa] -someqa</gk> Bc <gk>F</gk> 376`-<gk>o/`-708 C``-
126</gk> <it>b</it> 44` <gk>f</gk> 628 <gk</sup></gk>
84-<gk>527 z</gk> 55 59 76` 130 <gk>799</gk> <sup>Lat</sup>codd 100 101 <gk>Rufx</gk> 111 3 Co
:-<gk</sup>wme</gk>
72(
|)
: <gk>po-</gk>
reuqhnai 458 Carl 49 <gk>
|</gk> om <gk>ou)==n</gk> 458 AethcR <gk>
| o)do/n]</gk> post <gk>h/merw==n
</gk> tr 619 <gk>
| triw==n</gk>
` -, - <gk>n</gk> tr <gk>C</gk> 53` 730c
:om <gk>h(merw==n</gk> 730* <gk>
| i`na qu/swmen] opws <sup>Lat</sup>
reuswmen</gk> 56tx
10 392 59 <gk>
| tois uiois 82</gk> 343* 59 <gk>
| ui)ou\s u(mw==n] [;;;;.]mwn</gk> 72
:om <gk>
uio)u/s</gk> 73* 730*
319* <gk>
| u(mw==n</gk> 10] <gk>hmwn</gk> 376 14-16*-52*-54-131
: <gk>></gk> 125 246 Arm
:^20 72
458 <gk>
|</gk>
om <gk>e)pi 20</gk> 707 126 125 <gk>
|</gk> om <gk>ta/s</gk> 53*(c prm) <gk>
|</gk> om <gk>u\mw==n</gk> 20 A
* 15`-58 <it>b</it> 130
Latcod 1 01 (sed hab Compl) <gk>
| skuleu/sete --</gk> fin] <gk>habebitis vasa aegyptior
um</gk>
Latcod 1 00 <gk>
| skuleu/sete Y] -sate</gk> B
:-<gk</sup>hte</gk> 72
: <gk</sup>uskeuasate M</gk> 426-61
<gk>8</gk>
16-52-1 26-552 <it>b</it> <gk>d-44</gk> 458 343 370 <gk>x</gk> 527 18 55
: <gk</sup>unskeuasate</gk> (-<gk>tai>
1 30) <gk>F</gk> 30;
<gk</sup>unskeuasete Fb 29*</gk> 730
: <gk</sup>uskeuasete</gk> (aut -<gk>tai)</gk> A 1 5-29c-64`-82`-37
6
<gk>C`"-1652 126 131c 422552</gk> 44 56* 85`-127-344 <gk>t-370 y-527 z</gk> 76` 130 509 <gk>
799
:suskeu-</gk>
<gk>ashte</gk> 422(vid) 628
: <gk</sup>uskuleusete</gk> 131 c 75
: <gk>episuskeuasate</gk> 53`-246 ==
Compl;,
<gk>episuskeuasete</gk> 56c- 1 29
: <gk>aposuskeuasete 59
:praedabitis</gk> <sup>Lat</sup>codd Al ( <gk>
></gk> 91): 91
94 96
: <gk>decipietis</gk> Arab Arm Syh <gk>
| tois aiguptiois 799</gk>
//end of ch 3 file//