LXX Exodus 1-3 variants [draft file by James Blankenship]

 
[[under construction; unicode Greek needed]]

search/replace [lower case beta for Greek]:

fonts - <1 greek = <gk>, <2 italics = <it>, <s superscript = <sup> [done]

<it> 0 = <it>O [done]

insert space between initial colon (:) and following <gk> [done]

substitute unicode Gk for Beta, watching for differences in text, ambiguities of code (Z = C or Z)

put Greek (entire file) into Palatino linotype font [done]

make ch.v designations consistent and explicit

Z = c (ksi), also z (zeta)! [recheck]

B = b (beta)[done]

F = f (phi)[done]

Q = q (theta) [done]

X = x (chi) [done]

Y = y (psi) [done]

v = n [done]

Inscriptio:
<gk>ecoldos</gk> B M <it>O'</it><sup>-58</sup> <sup>135</sup> <it>C`</it><sup>-78</sup> <sup>131</sup>-54<sup>c</sup>-126<sup>mg</sup> <sup>1</sup>-414`-422 <it>b</it><sup>-19</sup> 56-129 628 <it</sup></it><sup>-30</sup> <it>t</it> 318` <it>z</it><sup>-122</sup> 130 424 509 646

<gk>biblion ecodos</gk> 319<sup>txt</sup>

<gk>ecodos b</gk> 55

<gk>ecodos aiguptou</gk> A

<gk>h ecodos (+ biblion deuteron ecodos<sup>c</sup>)</gk> 131

<gk>ecodos biblion b</gk> 19

<gk>ecodos biblion deuteron</gk> 44`-125 <it>x</it>

<gk>biblion deuteron ecodos</gk> 107`

<gk>biblion ths ecodou</gk> 18

<gk>biblion deuteron h ecodos</gk> 126<sup>mg2</sup> 799

: <gk>biblion b</gk> h ecodos</gk> 76

: <gk>biblos deuteros uparxw ths ecodou</gk> 58

: <gk>arxh ths ecodou (ecwdou</gk> 664) 78 53`-246 527

: <gk>arxh tou b bibliou- ecodos</gk> 75

: <gk>ecodos- arxh tou b bibliou</gk> 458

: <gk>ecodos tou ihl ec eguptou</gk> 30

: <gk>ecodos twn uiwn ihl ec aiguptou b</gk> 121

: <gk>twn mwsews deuteros ecodos logos ecodos</gk> 59

: <gk>ecodos ec aiguptou twn uiwn ihl suggrafh mwsh</gk> 313 319<sup>mg</sup>

: <gk>ecodos aiguptou twn uiwn israhl sugrafh mwsh</gk> 25

: <gk>ecodos ec aiguptou twn uiwn israhl suggrafh mwusews anou tou Qu kai profhtou</gk> 52`-761

:inscriptio deest in 135 54*-l26<sup>txt</sup> 122

 

1.1

Ταῦτα]
+ <gk>de</gk> 53' <sup>Lat</sup>Aug C D XVI 40 = <9M>9
τὰ
ὀνόματα
τῶν
υἱῶν
Ισραηλ
τῶν
εἰσπεπορευμένων]
<gk>-reuomenwn</gk> 54 107 628(vid);
: εἰσπορευομένων 0'<sup>-29</sup><sup>64`</sup> <sup>135</sup> C'<sup>-25</sup><sup>54</sup> <sup>73</sup> <sup>414</sup> <sup>422</sup>
<it>b</it> d-lO7 53`-56*-246 75` 30`-343 84-134 x 121-392 68`-128 18 59 319 424 509 799 Syh (sed hab Compl)
: εἰσπορευομένον 30
εἰς
Αἴγυπτον
ἅμα
Ιακωβ
|τῷ πατρὶ αὐτῶν] sub V Syh = <9M>9
|αὐτῶν 1(0)] autou 799
ἕκαστος
|πανοικίᾳ] panoiki</gk> (-<gk>panoikh</gk> 55
: -<gk>panoikei</gk> 72 75-628 121 59) <it>b</it> 1 5-72-135-376 -707 126-761 19` d<sup>-107</sup> <sup>f-56*</sup> n 121-527 18 55 59 799
: <gk>parolikia</gk> Ald
|αὐτῶν 2(0)] autw 799
: autou</gk> 72 Co = <9M>9
εἰσῆλϑον] [[check & redo var info]] <gk>ei)sh=lqe(n)</gk> 78 84 Sa
: ei)shl<gk><sup>q</gk></sup> 458
: εἰσήλϑοσαν (<gk>ei)sh=lqwsan</gk> 376 -707* 246 343 59 130* 799) A <it>b</it> O' <sup>-64txt*</sup> <sup>426</sup> <sup>708</sup> D 628 s x y z 55 59 76` 130 509 646` = Compl Ra
: </gk> Bo<sup>B</sup>

 

1.2
: <gk>R(OUBIN</gk> 426 550` 107* 56-129<sup>c</sup> 321 74`-370 527 630 76;

: <gk>R(OUBHM</gk> 58 -64 458 68;

: <gk>R(OUBIM</gk> 72 <gk>C'<sup>-77</sup> <sup>126</sup> <sup>550`</sup> 44-107<sup>c</sup>-125-610 53`-246 84 <it>x</it> 128 59 646`;

: <gk>R(OUBEIM</gk> 381` 77-126 106 730 46;

: <gk>ROBEL</gk> Aeth;

: <gk>RUBIL</gk> Arab Syh<sup>L</sup>

| cumew(n] sumaiwn</gk> 75

: <gk</sup>umswn</gk> <gk</gk>9*

| Leui)] leuei</gk> <it>b</it> 15' Sa

: <gk>leuh 68'-</gk>120'

: <gk>lebi 59

| )Iou/das]</gk> pr < 1kai</gk> 426 Aeth Arab = <9M;>9 <gk>ioluda</gk> A 29-376' 107* 458 30-127-343' 134 318 55 509 Arm

 

1.3
<gk>)Issaxa/r]</gk> pr <it>et</it> Aeth Arab = Sam

: <gk>isaxar</gk> 707 57-126-422 <gk>dfn-7 5</gk> 321 <gk>t-84</gk> <gk>x</gk> 1 <gk>8</gk> 55 59 646 Latcod 1 00 Arm Sa4 = Compl

: <gk>izachar</gk> Bo

| Zaboulw(n]</gk> pr <it>et</it> Aeth = Sam

:-<gk>bollwn</gk> 527

: <gk>ziboulo(/n</gk> Ach

| kai\ beniamin]</gk> > <gk>kai</gk> 376 <it>C</it> <it>d</it> 75 <it>x</it> 527 68 646' = Sixt: > 58-135* 126 Aeth<sup>C</sup> Bo Sa<sup>4</sup>

| kai/] ^(4) 1(0) 72

| Ben iami)n]</gk> -mein A <it>b</it> <gk>M</gk> 29'-64*-376-381' 1 <gk</gk>8'-</gk>537 56*-246-664* 628 <it</sup></it><sup>-321</sup> <sup>730</sup> 12 1-392 407 130 509 Ach Sa

:-<gk>mhn 82</gk> 75'

: <gk>Bainiamein</gk> 15

???

 

   4
init -- (5) h)=n]</gk> sup ras A(vid)

| init -- <gk>Nefqali ] post'Ash/r</gk> tr Sa<sup>4</sup>

| Da/n]</gk> pr <it>et</it> Aeth Arab

: <gk>DAM</gk> 19

| om <gk>kai 1(0) <it>d</it> <it>x</it> 527 646` Bo

| <gk>Nefqali</gk> A 707  129 321 318` Syh = Compl Sixt]

: <gk>NEFQALEI</gk> <it>b</it> <gk>M</gk> 15 64*-426 73 30-85-127-343` 55*;

: <gk>NEFQALIM</gk> 56 <it>t</it><sup>-46</sup> 128` <sup>Lat</sup>cod 100 Arm Bo;

: <gk>NEPTH</gk> La

: <gk>NEFQALHM</gk> 246 18;

: <gk>NEFQALEIM</gk> rell

| Ga\d kai ]</gk> om <gk>kai</gk> 44

: <gk>> 799

| Ga/d]</gk> pr <it>et</it> Aeth Arab

: <gk>gaq</gk> 128

: <gk>gar 19

|'Ash/r] <gk>ASSHR</gk> M 730 619 799 Bo<sup>A</sup>;

<3ai.e=r>3 Ach;

<gk>ASEIR</gk> 75;

+ <gk>KAI</gk> 58 126 Aeth<sup>C</sup> Bo Sa<sup>4</sup>

+ <gk>BENIAMIN</gk> 126 Aeth<sup>C</sup> Bo Sa<sup>4</sup>

+ <gk>BENIAMEIN</gk> 58 Sa

 

   5
init -- <gk>Ai)gu/ptw|]</gk> om de/ 458

:om <gk>h)=n</gk> 59

:om <gk>e)n</gk> 73

:ad fin tr <it>)O-</it>-15 Arm Syh ~ <9M>9

| hwshf</gk> 30*

| pa=sai yuxai)]</gk> +< <gk>AI</gk> Phil II 307

: <gk>ai yuxai pasai</gk> 52`-126-313`

: <gk>pasai ai yuxai</gk> (+ <it>ai</it> 82 73-413 628 84) 64*-72-82-381` <it>C`-</it> 25-54-414`-422 <it> b</it> <it> d</it> 246 <it> n</it> <it> t</it> <it> x</it> 527 128 509 799 Bo (sed hab Compl) = Ald

| e)c )Iakw/b]</gk> +> (* 64 Syh

:+ <gk>twn</gk> 376 Syh) <gk>ecelqontwn (ecelqo[   64

:-<gk>qwnt.</gk> 376) <it>)O</it><sup>-72</sup>-15-64<sup>mg</sup> Syh = <9M>9;

+> <gk>ai ecelqousai (</gk> 3l8<sup>txt</sup>) 56<sup>txt</sup> 318 Arm Co = Compl;

+<gk>ai ecelqousai</gk> 72;

+<gk>ai eiselqousai meta iakwb</gk> (> <gk>m. iak.</gk> 53`)

+<gk>eis aigupton <it>f</it><sup>-56txt</sup>: cf Gen 46:27

|</gk> <gk>pe/nte kai) e)bdomh/kolnta] ebdomh/konta pente</gk> 126 <it> d</it><sup>-106</sup> <it>f</it><sup>-56txt</sup> 458;

< 1pe/nte kai</gk> sub V -Syh;

> <gk>pe/nte kai</gk> Aeth<sup>c</sup> = <9M>9

<gk>+ yuxai</gk> 426 Arab Arm Syh = <9M>9

 

   6
<gk>)Iwsh/f] + en airuptw</gk> 376

|</gk> om <gk>pa/ntes</gk> 125

| genea/] suggeneia (sugen;</gk> 1 5

:-<gk>nia</gk> 376) 15-376

| e)keinh] autolu</gk> 130

 

   7
<gk>ui)oi/ -- xu ( dai=oi ]</gk> pr <gk>oi</gk> 458 84

:sup ras A

| hu)ch/qhsa n] hu)ch/nq.

:(hucu nq.</gk> 106-125` 619) 82-376-708 52`-761 <it>d</it> 53`-246 <it>n</it><sup>-628</sup> 321 370 619 59 799

| kai\ e)plhqu/nqhsan]</gk> post <gk>e)ge/nonto</gk> tr <it>)O</it><sup>-376</sup>-15 Syh == <9M>9

+ h genea ekeinh</gk> 53`: ex .6

|<gk>e)plhq. kai) xud

:e)ge/n;] peioraverunt multiplicabantur</gk> Arm

| eginonto  799

| katisxuon (-xion</gk> 321) <it>b</it> 72-426-707 73-413 <it> b</it> <it> f</it><sup>-56*</sup> <it> n</it><sup>-628</sup> <it</sup></it> 55 646 Cyr <it>Gl</it> 388]

katisxusan</gk> rell

| om <gk</sup>fo/dra</gk> 2(0) 129 <it>n</it><sup>-75</sup> 619 68 Cyr <it>Gl</it> 388 <sup>Lat</sup>cod 100 Ach Arm Sa (sed hab Ald)

| e)plh/qunen -- fin] <gk>et compleuerunt terram ualenter <sup>Lat</sup>cod 100

> 56<sup>c</sup>-129

| e)plh/qunen]</gk> pr <Lquia>L Arm;

-<gk>qunqh</gk> 53`;

<gk>eplh<sup>q</sup></gk> 56(*)

| de/] <L enim>L Ruf <it>Ex</it> I 4

:> Arm

au)tou/s] <gk>autois</gk> 376<sup>c</sup> 53`

: <gk>auths</gk> 376*

:> Bo<sup>A<sup>txt</sup></sup>

 

   8
<gk>a)ne/th de/ ] kai anesth</gk> 125

| e)p' Ai)/gupton] <gk>eis aigupton</gk> 246

: <gk>en aiguptw</gk> 509 <sup>Lat</sup>Ruf <it>Ex</it> I 5

> 82 44 75 Arm

| h)/|dei] <gk>eidh</gk> 55 319

: <gk>erinwske</gk> 75

 

   9
<gk>eipen de/] kai eipen</gk> <it>b</it> <sup>Lat</sup>cod 100 Ruf <it>Ex</it> I 5 Bo

| e)/qnei] genei </gk> 64<sup>mg</sup> <it>b</it> 509 Cyr <it>Ad</it> 185<sup>Pv</sup> Ach Sa (sed hab Compl)

| au/tou=] <gk>autw</gk> 376

> A Aeth<sup>-c</sup>

| ge/nos]</gk> eqnos A M<sup>txt</sup> <it>)O</it>'<sup>-15</sup> <it>C</it>' <it>b</it> <it>d</it> <it>f</it> <it</sup></it> <it>t</it> <it>x</it> <it>y</it> 68` -120` 18 55 59 76` 130 509 646 Cyr <it>Ad</it> 185<sup>PR</sup> <sup>Lat</sup>GregIl <it>Tr</it> 7 Ach Aeth Arm(vid) Sa Syh<sup>L<sup>txt</sup></sup> <sup>T</sup>: cf <9M>9

+ twn ebraiwn 458

| <gk>tw=n ui(w=n *)Israh/l] <gk>twn</gk> (> 422) <gk>israhlitwn C'<sup>-126</sup>

+<gk>touto</gk> 126

| me/ga] + pollu</gk> <it>b</it>

|<gk>plh=qos] <L est vi>L Arm

| <gk>isxu/ei]</gk> pr <gk>ouk</gk> 527

<gk>isxui</gk> 82 44 121 55* 319 Cyr <it>Ad</it> 185<sup>R</sup>

<gk>isxusei</gk> 135

| h/ma=s] <gk>hmwn</gk> 72 126 664* 458 799

 

   10
<gk>ou)=n]</gk> <gk>kai</gk> 376 <gk><it>C</it>'<sup>-126</sup> 30`-321 59 424 646 <sup>Lat</sup>cod 100 == Tar<sup>P</sup>

inc 76

> A 29-135-426 126 56* 628 85-127-343` <it>x</it> 121` 130 319 Cyr <it>Ad</it> 185 Ach Aeth Bo<sup>A</sup> Sa == <9M>9 Sam Tar<sup>O</sup>

| <gk>katasofisw/meqa] : <gk>-someqa</gk> (-<gk</sup>ofhs.</gk> 319) 82 25-54-313`-615 44` 53-246 628 85-344*-730 392 319 509

: <gk</sup>ofisomeqa</gk> 376

: <L depotentemus>L <sup>Lat</sup>cod 100

| au)tou/s] <gk>en autois</gk> 707

| plhqunqh=|] plhqunwn <it>x</it>

:-qunqeih</gk> (-<gk>quei</gk> 319) 246 76`

:-<gk>qwsi(n)</gk> (-<gk>qhnqwsi</gk> 126) <it>)O</it><sup>-376</sup> 126 <it>b</it> <it>d</it> <it>n</it><sup>-628</sup> <it>t</it></gk> <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7 Ruf <it>Ex</it> I 5 Aeth Arm Co Syh<sup>txt</sup> == Tar

<L multiplicetur>L in graece Syh<sup>mg</sup>

| kai/ 1(0) +erit</gk> <sup>Lat</sup>cod 100 == <9M>9

| h(ni/ka a)/n]</gk> <gk>h</gk> 126

| <gk>a)/n</gk> <it>b</it> 58-82-376 414` <it>b</it> 125 <it>f</it><sup>-56*</sup> <it>n</it><sup>-628</sup> 370* <it>x</it> <it>z</it> 130]

> 72-707

+<gk>ean</gk> Cyr <it>Ad</it> 185 rell

| <gk>hmin</gk> <gk</sup>umbh</gk> 68

| <gk>h/mi=n]</gk> <gk>umin</gk> 53`

: <gk>hmas</gk> 75

> 246 458* Cyr <it>Ad</it> 185<sup>pv</sup>

post <gk>po/lemos</gk> tr <it>C</it>' 53` 30` 424 646

| <gk>prosteqh/soltai</gk> <gk>kai/]</gk> pr <gk>kai</gk> 76` <sup>Lat</sup>cod 100 == <9M>9

tr Pel <it>Indur</it> 23

om <gk>kai/</gk> 458 <sup>Lat</sup>GregIl <it>Tr</it> 7

|<gk>ou(=toi] autoi</gk> 15-426* <it>b</it> Arm Syh<sup>L<sup>txt</sup></sup> <sup>T</sup>: cf <9M>9

| pro\s tou\s u(penanti/ous] tois upenantiois</gk> 72

: <gk>L cum eis>L GregIl <it>Tr</it> 7

om <gk>tou/s</gk> 376 53

| <gk>polemhsantes</gk> 413 44

| <gk>h(ma=s]</gk> <gk>umas</gk> 664*

|  <gk>e)celeu/sontai] ekporeusontai 29

|  <gk>gh=s] + hmwn</gk> (<gk>um. 19*)</gk> <it>b</it> 628 59

<sup>Lat</sup>GregIl <it>Tr</it> 7 Pel <it>Indur</it> 23 Ruf <it>Ex</it> I 5 Aeth<sup>-CR</sup> Bo (sed hab Compl)

 

   11
<gk>e)pe/thsen F<sup>b</sup>] -san F 19* 628 321 318 128 76` Aeth<sup>C</sup> Bo Syh == <9M>9

: <gk>esthsan</gk> 72

| <gk>epistantas</gk> 72*

| tw=n]</gk> pr <gk>epi</gk> 68

|  <gk>kakw/swsin F<sup>b</sup>] -sousin</gk> A F 29*-58-376 500 19 125 53`-129 <it>n</it><sup>-628</sup> 730 619 121 55 319 799

| <gk>au)tou/s> 1 == Sam Tar] <gk>autois</gk> 376 <it>b</it><sup>-537</sup> 44 129 <it>z</it><sup>-630</sup> 646 Cyr <it>Ad</it> 185<sup>P</sup> 308<sup>p</sup> (sed hab <it>Gl</it> 388 Ald Compl)

<gk>auton</gk> 71*(c pr m) == <9M>9

|  <gk>e)n toi=s e)/rgois] <L in operibus suis>L <sup>Lat</sup>cod 100 == <9M>9

| <gk>w)|kodo/mhsan</gk> == Sam Tar]

:-<gk</sup>en</gk> 246 == <9M>9

| <gk>o)xura/s] <gk>isxuras</gk> 646

post <gk>*faraw/</gk> tr Ach

|  <gk>th/n te *piqw/m]

: <gk>thn pepeiqw</gk> 56<sup>mg</sup>

: <gk>thn te feidwm</gk> 56<sup>txt</sup>

: <gk>phythonam</gk> <sup>Lat</sup>cod 100

| <gk>*piqw/m</gk> A 130 Sa(vid) Syh<sup>T<sup>mg</sup></sup> == <9M>9 Tar<sup>O</sup>]

: <gk>peiqwm</gk> M 376<sup>c</sup> <sup>pr</sup> <sup>m</sup>-707<sup>c</sup> 77 <it</sup></it><sup>-730</sup> Ach

: <gk>piqwn</gk> 75 == Sam

: <gk>pitqwn</gk> Cyr <it>Ad</it> 185<sup>R</sup>

: <gk>peiqwn</gk> 82 Phil III 221<sup>ap</sup> Cyr <it>Ad</it> 185<sup>P</sup>

: <?petho-m>? Bo

: <gk>pytwm</gk> Syh<sup>L</sup> <sup>Tt<sup>xt</sup></sup>

: <gk>fiqwm</gk> 15-29 71 55* 76` Eus III 1.168 == Compl ^^

: <gk>fiqom</gk> 318

: <gk>feiqwm</gk> 376*

: <gk>fiqwn</gk> 125 392

: <gk>feiqwn</gk> 799;

: <gk>biqwm</gk> 619

: <gk>phidon</gk> Arm;

: <gk>piqwf</gk> 64`

: <gk>peiqwf</gk> <it>C</it>'<sup>-54</sup> <sup>77</sup> <sup>78</sup> <sup>126</sup>

: <gk>peiqof</gk> 54;

: <gk>piqwq</gk> F

: <gk>fiqwq</gk> Fa <it>d</it><sup>-125</sup> <it>t</it><sup>-46</sup>

: <gk>fiswn</gk> 509

: <gk>biqwr</gk> 59

: <gk>fimwq</gk> 135

: <gk>plinqon</gk> 72

: <gk>plh<sup>q</sup></gk> 458

: <gk>piqw</gk> 381-426 <it>b</it> 246 128` 55<sup>c</sup> Cyr <it>Ad</it> 185<sup>V</sup>^^

: <gk>poiqw</gk> 53`

: <gk>puqw</gk> Phil II 12<sup>U</sup>

: <gk>(...]qw(..]</gk> 121*

: <gk>qw</gk> 121<sup>c</sup>

: <gk>peiqw</gk> Phil II l2<sup>te</sup> III 221<sup>te</sup> Cyr <it>Gl</it> 388 Theoph 244 rell

| kai 3(0)]</gk>  pr ^ Syh<sup>T</sup>

:sub ^ Syh<sup>L</sup> ^^

:>  58 527 <sup>Lat</sup>PsAmbr <it>Mans</it> 12 Ach

| *Ramessh/]</gk> pr <gk>thn <it>)O</it><sup>-72</it>-1 5 126 527 76: cf <9M>9

: <gk>ramesh</gk> F M <it>C</it>-25-78-126 19` 106-107` <it>n</it> 127 370* 318-527  59 76 130 799 Phil III 221<sup>ap</sup> Arm<sup>te</sup> (sed hab Compl)

: <gk>ramesi</gk> 125

: <gk>rem. </gk> 313

[[??: <gk>ramsi-</gk> Arm<sup>ap</sup>

:-<gk</sup>shn</gk> 376*-707 Phil III 221<sup>ap</sup>

: <gk>rameshn</gk> Phil iii 221<sup>ap</sup>

: <gk>ramessem</gk> <sup>Lat</sup>cod 100 PsAmbr <it>Mans</it> 12

| <gk> kai/4(O) -->fin] sub V Syh

: </gk> 53`-56<sup>c</sup>-246 == <9M>9

om <gk>kai\</gk>

<gk>*o)/n</gk> 707

|<gk>*o)/n]</gk> pr <gk>thn</gk> 527 Phil III 221 == Ald

: <gk>wr</gk> <it>b</it> (sed hab Compl)

:> 58|

<gk>h(/</gk> : <gk>htis</gk> Theoph 244

 > 1 646

| po/lis] polews <it>x</it>

:po<sup>l</sup></gk> 126

 

   l2
om <gk>kaqo/ti -- isxuon</gk> 14

| <gk>kaqo/ti] kaqo</gk> 527

: <gk>osw</gk> Or IV 84 <it>Cels</it> Vll 26

| om de/ Bo<sup>B</sup>

|<gk>au)tou/s</gk> > Ach

:post <gk>e)tapei/noun</gk> tr 426 Arm Syh == <9M>9

|  <gk>etapeinounto</gk> <it>x</it>

| tosOu/tW|</gk> Tht <it>Ex</it> lOO<sup>ap</sup>]

:-<gk>to</gk> 15-29<sup>c</sup>-64` 77<sup>c</sup> 664 628 392128* 76` 646 Tht <it>Ex</it> lOO<sup>ap</sup>

: <gk>kata tosouton</gk> 318

: <gk>tosouton</gk> 82`-376-381<sup>c</sup>-618 77*-550` <it>n</it><sup>-628</it> 619 527 799 Tht <it>Ex</it> 1OO<sup>te</sup>

: <gk>tosounto</gk> 53

|  <gk>e)gi/nonto</gk> <gk>egen.</gk> 707 44 53` <it>n</it><sup>-628</sup> 321 59

: <gk>egign.</gk> 68` -120` == Sixt

|  <gk>kai) isxuon</gk> F 426 <it</sup></it><sup>-321mg</sup> 121` 59 509 Tht <it>Ex</it> lOO<sup>ap</sup> Aeth Bo Syh

: <gk>kai katisxuon sfodra sfodra</gk> Or IV 84 <it>Cels</it> VII 26: ex .7 > 135;

+<gk</sup>fodra</gk> A*(vid) 29 16 <it>b</it> 44 53` <it>n</it> 619 Tht <it>Ex</it> lOO<sup>ap</sup> <sup>Lat</sup>cod 100 Cyp <gk>fortun</gk> 10 Ruf <it>Ios</it> IX 10 Ach Arm

+<gk</sup>fodra sfoldra</gk> Tht <it>Ex</it> lOO<sup>te</sup> rell == Ra

|  <gk>oi) Ai)gu/ptioi</gk> subV Syh == <9M>9 Sam

|  <gk>a)po/ --</gk> fin]

: <gk>tous uious ihl <it>)O</it>-15-64<sup>mg</sup> <it>n</it><sup>-628</sup> 30` -85`<sup>mg</sup>-127<sup>mg</sup>-343 -344<sup>mg</sup> 318 <sup>Lat</sup>cod 100 Ruf <it>Gen</it> XVI 1 Aeth Arm

|  <gk>tw=n]

</gk> pr <gk>proswpou</gk> F<sup>b</sup> Bo == <9M>9

: <gk>pantwn1 82

 

   13
comma] om init --<gk>)I)srah/l</gk> 376: homoiot; > Ach Sa

| <gk>kateduna/steuon --(14)

<gk>Zwh/n</gk>] <it>in odio eis adducebant uitam et cum ui potestatem exercebant</gk> <sup>Lat</sup>cod 100

| kateduna/steuon]

:-steusan F<sup>b</sup>

:kated[;..</gk> 64<sup>mg</sup>

| <gk>oi) Ai)gu/ptioi] 72 126 75,;

<gk>post)I)srah/l</gk> tr <it>f</it><sup>-129</sup>

| tou\s ui(ou\s) I)srah/l] tois uiolis ihl</gk> 127-343`

:twn uiwn ihl 19,;</gk>

<gk>autous</gk> 72 126 44 7

|</gk> om <gk>bia|</gk> <it>b</it> Or X 207 (sed hab Compl)

 

   14
<gk>katwdu/nwn] -dunoun (-nou</gk> 107`) <it>d</it> <it>t</it> 76

:-<gk>dunan 799

:katetapeinwn 59

+ <gk>epoioun</gk> 619

| au/tw=n / th=n Zwh=n] autous</gk> 53`

:tr 426 Arm Syh == <9M>9

| e)/rgois 1(0)]</gk> homoiot 2(0) 422

| <gk</sup>klhroi=s] + ois epoioun</gk> 53`

: <gk>+ epoioun</gk> 537

| tw=i|]</gk> pr <gk>en</gk> 129 == Compl <9M>9

pr <gk>kai</gk> 52-126

:+ <gk>te</gk> <it>b</it> 53` (non hab Compl)

| ph=lw|</gk>]

:pilw 246*

:pulw 130

| kai/ 3(0)] <it>in</it> <sup>Lat</sup>cod 100

| <gk>e)n toi=s pedi/ois</gk>] : <gk>en tw pediw</gk> 53` Aeth == <9M>9

<gk>pollois</gk> <it>x</it> > <gk>toi=s</gk> 628

| kata/ -- w(=n] <it>et in omni opere quod</it> Aeth

| kata/] kai</gk> 53`

| > <gk>pa/nta</gk> Ach

|</gk> > <gk>ta/</gk> 72

| e)/rga] + (^ 64 Arm<sup>mss</sup> Syh) <gk>autwn</gk> <it>)O</it><sup>-58</sup>-15-64<sup>mg</sup> Arm Syh == <9M>9 Sam Tar <sup>O</sup> ^^

| <gk>w(=n katedoulou=nto]</gk> <gk>en ois katedunasteuon</gk> 30` 85`<sup>txt</sup> l27<sup>txt</sup>-343-344<sup>txt</sup>

| w(=n] en ois 58 <it>d</it> <it>n</it><sup>-628</sup> <it>t</it> <sup>Lat</sup>cod 100 Syh; <it>a</it> 53` 18

| katedoulou=nto] -dolountw</gk> 376

:-<gk>loun</gk> 72

:-<gk>lwn</gk> 129

| meta/] eis tas x </gk> fin] <gk>+ kaqoti de autous etapeinoun tosoutw pleious eginonto kai isxuon sfodra sfodra</gk> 14: ex .12

 

   15
<gk>kai\ ei)=pen] eipe de 799

| o ( -- (17) e)cwolgo/[noun]</gk> absc 370

| tw=n *Ai)guti/wn</gk> Ach] <gk>aiguptou</gk> F <sup>Lat</sup>cod 100 Sa;> 29

| <gk>tas</gk> <gk>ebraias</gk> Fb

| th=| mia=|]</gk> post <gk>onoma 1(0) tr 126: cf <9M>9

| > <gk>au/tw=n</gk> 126 Aeth Arm == <9M>9 Sam Tar <sup>O</sup>

|<gk>h(=</gk>] <gk>w</gk> 125;

: <gk> hn</gk> Compl; > F M 29`-135-376` <it>C'</it> 129 <it</sup></it> 18 59 76` 509 646` Ach Aeth Sa Syh == Sixt

| <gk>o)/noma</gk>1(0)] <gk>onomati 29 414-551*; > 319 799

| <gk>*sepfwra/</gk> Syh<sup>T<sup>mg</sup></sup>]

: <gk>fora</gk> 78-550` 19-314 <it>d</it> 53` 628 84 <it>x</it> <it>y</it><sup>-121</sup> 68-120`-122<sup>c</sup> 799

: <gk</sup>efwra</gk> 129 <sup>Lat</sup>Ruf <it>Ex</it> II 1 Ach Arm<sup>te</sup> == Compl

: <gk>.spwr`</gk> Syh<sup>L</sup> <sup>T<sup>txt</sup></sup>

: <gk</sup>effo-ra</gk> Sa

: <gk</sup>emf</gk><gk></gk>. 54

: <gk</sup>emfora</gk> 458

: <gk</sup>empfora</gk> 319

: <gk</sup>epforra</gk> 75

: <gk</sup>epfwran</gk> 59

: <gk</sup>edphora</gk> <sup>Lat</sup>cod 100

|<gk>kai\</gk> <gk>to/</gk>] <gk>to de</gk> 527

 > <gk>to/</gk> 135 126 125 246 628 799

|<gk>th</gk> <gk>deutera</gk> 72 126 125 628 68`-120`

 

   16
<gk>kai eipen]</gk> > 75

+<gk>autais <it>b</it> <it>f</it><sup>-56*</sup> 527 <sup>Lat</sup>cod 100 Aeth Arab == Ald

| o)/tan]</gk> <gk>ote an</gk> 799

| maieuhsqe</gk> <it>z</it> (sed hab Ald)

| : <gk>tais</gk> 125 59

| : <gk>ebraiais</gk> 59

:(ebraias</gk> 125

|<gk>w)=sin] <gk>eisi</gk> 381` == Ald

: <gk>eni</gk> 68`-120`

| tw=i] to</gk> 15-58`-135-376*-707-<it>oI</it> 14`- 25-54-126-131-500-550` <it>b</it> <it>d</it> <it>f</it><sup>-l29<sup>c</sup> <sup>pr</sup> <sup>m</sup></sup> <it>n</it> 85-343-344* <it>t</it><sup>(-370)</sup> <it>x</it> <it>y</it> <it>z</it><sup>-128</sup> 18 55 59 76` 509 799 Cyr <it>Ad</it> 308<sup>PV</sup>

| a)/rsen] arren 82 527 :post h)=| tr <it>b</it> (sed hab Comp)

|<gk>h)=|</gk>] <gk>hn</gk> 615*(vid) 619

:  > 458 Aeth<sup>R</sup>

| a/poktei)nate]

: <gk>apokteinete</gk> 527

| au)to/</gk> 1(0) ] auton</gk> 53-246<sup>c</sup>

|</gk> > <gk>de)</gk> 458

| peripoieisqe] -poieite</gk> 56*

:-<gk>poihsasqe (-sqai</gk> 56` 458) <it>b</it><sup>19</sup> <it>f</it><sup>-56*</sup> 458

|</gk> om <gk>au)to/ 2(0) <sup>Lat</sup>Ruf <it>Ex</it> II 1 Arm

 

   17
<gk>tw Qew</gk> 30

| kai) 1(0)] + ras 5--6 litt 458

| kaqo/ti -- Ai)gu/ptou] kata to rhmatou faraw 799

| kaqo/ti] kaqws</gk> 72-<it>oI</it><sup>-64mg</sup> <it>C'</it><sup>-551</sup> 44 59 646

: <gk>kaqa</gk> 551 125 509 Cyr <it>Ad</it> 308<sup>RV</sup>

| sune/tacen] <gk>proset.</gk> 72

: <gk>eneteilato</gk> 29<sup>c</sup> <sup>pr</sup> <sup>m</sup>; > 29*

| au)tai=s] autous</gk> 730 > 376 53` 121 18

| Ai)gu/ptou] homoiot. (18) 54 19

| kai)2(0)] homoiot. (18) 1(0) 458

| a)/rsena] <gk>arrena</gk> 72-82 84 527 509 646 == Compl

: <gk>arsenika</gk> 707 Cyr <it>Ad</it> 308<sup>RV</sup>

 

   l8
<gk>ta\s mai)as] tais maiais 19 125 == <9M>9;+ <it>hebraeorum</it> Sa

| au/tais] autois 799* > 552

|> <gk>oti</gk> 628

| e)poih/sate -- kai)2(O) ] ouk epoihsate to prostagma mou kai 72 > 126

| e)poih/sate] epoieite</gk> 56*

| e)cwogone=ite] -neisate</gk> 58<sup>c</sup> <sup>Lat</sup>cod 100 Arm

: <gk>ecwogonoun</gk> 392

: <gk>cwogoneite</gk> 72 <it>C'</it><sup>-78</sup> 44 (|) 53` 84 619 76`

: <gk>cwogwneite</gk> 664

: <gk>cwogoneitai</gk> 319

: <gk>ecwopoieite</gk> 15

| a)/rsena ] arrena 82 628 84 527

: <gk>arsenika</gk> 707

: <gk>brefh</gk> 72

 

   19
<gk>eipan] eipon F<sup>b</sup> 15-72-376-381` 422 <it>b</it> <it>d</it> 246 <it>n</it> <it>t</it> 527 128 76 (sed habCompl) ^^

: <gk>eipe(n)</gk> 71 59*

| > <gk>ai)</gk> 1(0) 1l8*(c pr m)

| maiai] gunaikes</gk> 509

| tw=| faraw/] tw basilei</gk> <it>b</it> (sed hab Compl) > 125

| ou/x] ouk 82

| gunaikes] pr <gk>ai</gk> 29<sup>c</sup>-72-376 <it>C'</it><sup>-413</sup> <it>b</it> 85` 84 18 55<sup>c</sup> 59 76` 509 646` Co^^ > 413

| Ai)gu/ptou] ai aiguptiai</gk> 72 <it>b</it> 730 Phil II 295<sup>ap</sup> == <9M>9

:tiai F<sup>b</sup> 58-</gk>64<sup>mg</sup>-426 57* <it>n</it> 30-321<sup>mg</sup> Phil II 295<sup>te</sup> Arm Syh == Compl ^^

(-tioi</gk> 458)

| ai) Ebrai=ai]</gk> pr <gk>tiktousi 19

:pr outw(s) kai 72 <it>C</it> 44 <sup>Lat</sup>cod 100

:pr outw(s) kai ai 57 53` 664

+(e 664)

:gunaikes 57 53`

(ginekes</gk> 664)

: <gk>ei</gk> 458

: <gk>ebraioi</gk> 458

: <it>mulieres hebraeorum</it> Bo

:> <gk>ai)</gk> 376 319 799

| > <gk>tiktousin ga`r</gk> Aeth

| ti)ktousin] pr <gk>tiktousai</gk> 108

:bis scr 118 -537 Sa

| pri)n h)/] pro tou M 15413 <it>b</it> <it>d</it> 56* 628 85-127-32l<sup>txt</sup>-343` <it>t</it> 18 55 130 509 799 (sed hab Compl)

:> h)/] 707-708 126 Phil II 147 ^^

| ei)selqei=n]</gk> pr <gk>tou</gk> 56<sup>c</sup>-246

: <gk>elqein</gk> 126 19 <it>d</it><sup>-106</sup> 53` 628 <it</sup></it><sup>-321</sup> 59 319

| pros au)ta/s] eis autas</gk> 414` 107`-125 > Phil III 147 Aeth ^^:

contra <9M>9 post <gk>maias</gk> tr 458 == Tar<sup>P</sup>

| autas] autous</gk> 75-458*<sup>vid</sup>

| kai etikton] kai etekon 799

: <it>pariunt</it> Aeth >  53` 75 46 509 Arab

 

   20
> de/ Bo<sup>B</sup>

| e)poiei] <it>fecit</it> Ach Aeth Sa Syh

| o( Qeo/s]</gk> > <gk>o(</gk> Phil I 167<sup>te</sup>; > Chr lX 393

| tas maias (maiais</gk> 126) 72 458 527 Phil I 167

| > <gk>kai/ 1(0) <sup>Lat</sup>cod 100

| e)plh/qunen] -quneto</gk> 628

<gk>eplunq.</gk> 66

:-<gk>qunon</gk> 422 == Sam Tar<sup>P</sup>

+ <it>nalde</it> Arm

| kai) isxuen] kai isxuon 82-426 <it>C'</it><sup>-52`</sup> <sup>126</sup> <sup>761</sup> 125 628 55 646 == <9M>9

: <gk>enisx.</gk> 58`

: <gk>katisx.</gk> 319

: <gk>isxuse(n)</gk> 708 392-527 <it>z</it><sup>-128</sup> 59 Aeth Co

: <gk>enisx. autous</gk> 19 ad fin tr 414`

 

   21
<gk>e)peidh/</gk> B*(vid)] <gk>epei de</gk> B<sup>c</sup> 64*(vid) <it>C`</it>-25-54-414`-422 664 628 321 Ach Sa

: <gk>epei oun</gk> 52`-313` ^^

: <gk>epeidan</gk> Phil II 311<sup>ap</sup> (sed hab I 113)

: <gk>epei</gk> Did <it>Eccl</it> 342.9 <it>Hiob</it> 146.10 <it>Ps</it> 108.13;

: <gk>dioti</gk> 799;

+ <gk>de</gk> 135 458 121 Aeth <sup>F</sup><sup>G</sup><sup>H</sup><sup>R</sup> Bo<sup>A</sup>

|<gk>ai maiai]</gk> post <gk>Qeo/n</gk> tr 53`-129 Tht <it>Ex</it> lOO<sup>ap</sup> <sup>Lat</sup>Ruf <it>Lev</it> XV 2 (sed hab <it>Ex</it> II 2) Aeth

| to\n Qeo/n] <it>dominum</it> <sup>Lat</sup>cod 100 == Tar

:> 18 Arm<sup>ap</sup>

| om <gk>e)poi/hsan -- fin 125

| e)poihsan</gk> F F<sup>b</sup>] pr (^ Syh) <gk>kai</gk> <it>)O</it>-15-707 130 646 Arm<sup>ap</sup> Syh ^^

:-<gk</sup>en</gk> F<sup>c</sup>(vid) Aeth<sup>C</sup> == Compl <9M>9;

+ <gk>de</gk> 129 458 <it>z</it> 799

| <gk>e(autai=s</gk> F F<sup>b</sup><sup>1</sup>] <gk>autais</gk> F<sup>c</sup><sup>et</sup><sup>b</sup><sup</it></sup> M 82 18 Did <it>Hiob</it> 146.11 Aeth<sup>C</sup>

: <gk>eautas</gk> 19 Phil I ll3<sup>ap</sup> (sed hab II 311);

<gk>ep autais</gk> 118`-537

: <gk>eautois</gk> A

: <gk>en tais</gk> 72*

:> Aeth<sup>-C</sup>

| oi)ki/as] oikiais 618* 85 619

: <gk>oikeiais 82* 610

: <gk>oikeias</gk> 82<sup>c</sup>-135

 

   22
<gk>faraw/] <it> rex</it> <it>aegypti</it> Arab

| om <gk>panti</gk> Ach

| au\tou] autw</gk> 134

: > 19 85 <sup>Lat</sup>Ruf <it>Ex</it> II 3

| a)/rsen] <gk> arren</gk> 82

: <gk>arshn</gk> 707

: <gk>arsenikon</gk> <it>n</it><sup>-628</sup>

|<gk>o(/</gk>] <gk>w</gk> 71 *(vid)

: <gk>on</gk> 458

| a)/n 58-426 53`-129 628 <it>t</it> Cyr <it>Gl</it> 389]

: <gk>ean</gk> Cyr <it>Ad</it> 308 rell (sed hab Cornpl) == Ra

| <gk>apotexqh</gk> <it>z</it>

| tois h)brai/ois</gk> == Sam Tar] <gk>par</gk> <gk>ebr.</gk> 799

: <gk> tais</gk> <gk> ebraiais</gk> <it> x</it>; sub   V   Syh == <9M>9

| ei)s] epi <it>f</it><sup>-129</sup>

|</gk> om <gk>to/n</gk> 16

| kai\ pa=n] <gk>pan</gk> <gk> de</gk> 72 527 Bo<sup>B</sup>

|<gk>qhlukon</gk> 509

| cwogonei=te] - neito</gk> 376

:- <gk>neitai</gk> 500-551 <it> n</it><sup>-628</sup> 646*

: <gk>cwoneisate</gk> 628

: <gk>peripoihsasqe</gk> <it>b</it><sup>-19</sup> (sed hab Compl): ex .16

: <gk>peripoieisqe</gk> l9

: <gk>-goneisqai</gk> 319

|<gk>auto/] <gk>auton</gk> 75

: <gk>auta</gk> 458 Co

:> 509 <sup>Lat</sup>cod 100 Aug Loc in hept II 3 Ruf <it>Ex</it> II 3 Aeth Arm Syh == <9M>

 

Blankenship LXX Ex 2

 

2 1
<gk>tis] + anhr 799

| th=s fulh=s</gk>] > <gk>ths</gk> 52-77-126

:+ <gk>ths</gk> 64<smg>s 321<smg>s(vid)-343-344<smg>s Phil 111 99<sap>s

| *leui/</gk> 1(0) leuei B* M 15-707 Sa

: <gk>leuh 68`-120`

: <gk>lebi 59

:leieei</gk> Ach; ms:parabl 2(0) <it>C</it><sup>-131mg</sup>

| os] ws</gk> 376

: <it>hic</it> Co

: <gk>abraam kai</gk> Phil III 99<sup>ap</sup>; <gk>kai</gk> <it>b</it> <sup>Lat</sup>cod 100 Aug <it>Loc in hept</it> II 4 == <9M>9 > Aeth<sup>P</sup>

:+ <gk>kai</gk> 426

| e)/laben</gk>]

+ <it</sup>ibi</it> <sup>Lat</sup>Aug <it>Loc in hept</it> II 4 Aeth

:+ <it</sup>ibi uxorem</it> <sup>Lat</sup>cod 100 Ach Arm Sa

:+ <gk>gunaika</gk> F Bo

| tw=n qugaterwn Leui)] gunaika ioxabel</gk> Phil III 99<sup>ap</sup>: cf 6.20

| tw=n qugate)rwn</gk>] pr <gk>apo</gk> 131(<sup>mg</sup>)

:pr <gk>ek</gk> M <it>oI</it> <it>cI1</it> <it>f</it> 628 30` <it>x</it> 527 18 130 319 424 509 646` Cyr <it>Gl</it> 392<sup>Pc</sup> Co == Ald Compl

: <gk>thn qugatera</gk> 106*(c pr m)-107`-125 == <9M>9

|<gk>Leui) 2(0) pr <gk>twn</gk> 64<sup>mg</sup> <it>b</it> 321<sup>mg</sup>-344<sup>mg</sup> Phil III 99<sup>te</sup> (sed hab Compl);

: <gk>leuei</gk> B M 15-707 Ach Sa

: <gk>leuh</gk> 68`-120`

:+ <gk>gunaika</gk> 131(<sup>mg</sup>) Aeth Arab

| kai) e)/sxen au\th/n</gk>] pr <gk>os</gk> <it>b</it> (sed hab Compl)

: <gk>kai eishlqe proS authn</gk> 527

: > B Aeth<sup>CG</sup> Arab Arm Bo == <9M>9

; homoiot

| esxhken</gk> Phil 111 99<sup>ap</sup>

| auth</gk> Phil 111 99<sup>ap</sup>

   2
<gk>kai</gk> 1 (0) <gk>h</gk> <it>x</it>

:> 799

| elaben en gastri 106

| e)/laben] esxe 527

| a)/rsen] arren 84 Phil III 99;

| arsena <it>x</it>

| <gk>de</gk> <it>d</it> 126: > 646

<gk>au)to/</gk> 1 (0)] <gk>auton</gk> 500 75 59* 799

> 376 55 <sup>Lat</sup>cod 100

| a)stei=on</gk>] <gk>agaqon</gk> 458^^

+ <gk>on</gk> 29-426 <it>f</it><sup>-129</sup> 75 318 Phil III 99 Syh: cf <9M>9

+<gk>onta</gk> 799

| <gk>e)ske/pasan</gk>] <gk>eneskepasan</gk> 59*

: <gk>eskepesan</gk> 458

: <gk>ekruwan</gk> 121 ^^

| <gk>au\to/</gk> 2 (0) ] <gk>autw</gk> 376 313-615* 19 129. 59<sup>c</sup>

: <gk>auton</gk> <it>n</it><sup>-628</sup>

| <gk>treis mhnas</gk> 426 == <9M>9

| <gk>tris</gk> 458

PROOFED NOT ENTERED

   3
<gk>e)pei\ de/</gk> B<sup</sup></sup>] <gk>epeidh</gk> 761 53-56<sup>c</sup> 392 55 130 509

: <gk>epeidh</gk> (litt <gk>dh</gk> sup ras 129)

<gk>de</gk> A 7.7-550` <it>b</it> 129-246 628 121 646

: <it>et cum iam</it> <sup>Lat</sup>cod 100

: > <gk>de/</gk> 16* <sup>et c2</sup> 106

|<gk>h)du/nanto</gk>] <gk>edunanto</gk> A F M <it>O</it>``<sup>-72 82 381*</sup> 106 <it>t</it> 121` <it>z</it> 509 == Sixt

: <gk>hdunato</gk> (<gk>eidunato</gk> 319) 458 <gk>319</gk> == <9M>9

| <gk>au)to/</gk>] <gk>autw</gk> 376 59<sup>c</sup>

: <gk>auton</gk> 426 118`-537 <sup>Lat</sup>cod 100

:post <gk>e)/ti</gk> tr 30`

:post <gk>kru/ptein</gk> tr A F M 29`-135-376`-<it>oI</it> <it>C</it>`' 19` <it>d</it> <it</sup></it><sup>-30`</sup> <it>t</it> 121` 18 59 76` 130 509 646 Cyr <it>Gl</it> 392 <sup>Lat</sup>Ruf <it>Ex</it> II 4 == <9M>9

: > 53` Arm Syh

| <gk>e)/ti</gk>] > l29<sup>txt</sup> 628 799 Bo

:post <gk>kru/ptein</gk> tr 527

| <gk>krubein</gk> 321<sup>mg</sup> 59

| <gk>e)/laben</gk> F<sup>b</sup>] pr ^ <it>ei</it> _ Syh

: <gk>ebalen</gk> F<sup>a</sup>

:+ <gk>autw</gk>

(<gk>auto</gk> 72 318 122*

: <gk>eauto</gk> 799)

B F <it>O</it><sup>-426</sup> -15` <it>b</it> <it>d</it> 56`-129 370 <it>x</it>

<it>y</it><sup>-121</sup> 68`-120` 55 59 130 799 <sup>Lat</sup>cod 100 Ach Sa == Ra <9M>9

: + <it</sup>ibi</it> (fem) Bo

:+ <gk>de</gk> 7O7(vid) 509

| <gk>au)tou=</gk> ] <gk>autw</gk> A 134 121 509

: > F <it>d</it> 370 <it>x</it> 318 59

| qibin</gk> ]

<gk>qhkhn</gk> 16 == Compl

: + <gk>(^ Arm<sup>mss</sup> Syh) <gk>papurou</gk> 15-376` 527 Arm Syh == Ald ^^

| > <gk>kai/</gk> 1 (0) 68 (sed hab Ald)

| kate)xrisen] <gk> katexrhsen</gk>

(<gk>katexerhsen</gk> 313* vid)

313 108-118*-314 458 30 370* 318-392* 68*1 319

: <gk>exrisen</gk> 126

| > <gk>au)th/n</gk> 1 (0) - <gk>authn</gk> 2 (0) 7O7<sup>txt</sup>

| au)th/n</gk> 1 (0) ] <gk>auth</gk> 72

: <gk>auto</gk> 739 799

| <gk>a\sfaltopi/ssh</gk>]

<gk>asfaltwpissh

(<gk>asfaltwpissei</gk> 55

: <gk>asfaltwpisi</gk> 30)

B<sup>c</sup> <it>O</it><sup>-426</sup>-15-29-64*-135 <it>C</it>`'<sup>-552</sup> <it>b</it> <it>d</it><sup>-125</sup> <it>n</it> 30`-85`-343 <it>t</it> <it>x</it> <it>y</it> <it>z</it> 18 55 59* 76` 646` Phil II 249 Cyr <it>Gl</it> 392

: <gk>asfaltw kai pissh</gk> 552 125 53` 59<sup>c</sup> <sup>Lat</sup>cod 100 Aeth Syh == Compl <9M>9

: <it>bitumine</it> Ruf <it>Ex</it> II 4

: <gk>pissh</gk> 509

| <gk>kai?</gk> 2 (0)] ms:parabl. 3(0) 509

| <gk>e)ne/balen</gk>] <gk>eneballe</gk> 527

: <gk>anebale</it> 59*

: <gk>elabe</gk> 53`

| <gk>to\</gk> <gk>paidi/on</gk> / <gk>ei)s</gk> <gk>au)th/n]

<gk>to</gk> <gk> paidin</gk> <gk> eis</gk> <gk>auto</gk> 458

:tr 426 Arm == <9M>9

| <gk>paidarion</gk> 72

| <gk> eis</gk> <gk>au)th/n</gk>] <gk>en</gk> <gk>th</gk> <gk>qhbh</gk> <it>b</it> (sed hab Comp|)

| <gk> au)th/n</gk> 2 (0)] <gk>autw</gk> 376

: ms:parabl 3 (0) 53`-129

| <gk> au)th/n</gk> 3 (0) ] <gk>en</gk> <gk> authn</gk> <gk>to</gk> <gk> paidion</gk> F<sup>a</sup> <sup>vid</sup>

: <gk>auto</gk> 19

: > 413 <sup>Lat</sup>cod 100 == <9M>9 Sam

| <gk>ei)s</gk> 2 (0) -fin] <it>ad</it>

<it>ripam</it> <it>fiuminis</it> <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7

| <gk>e(/los</gk>] <gk>eleos</gk> 313* 46* 527;

<gk>elin</gk> 799

   4
<gk>kai kateskopeuen] <gk> kateskopeue</gk> <gk>de</gk> 392 <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7

|katesko/peuen]

: <gk> kateskopeusen</gk><it>O</it><sup>-426</sup>-618 <sup>C</sup>`'<sup>-73</sup> 19 610 53` 628 85-127-321<sup>txt</sup>-343` <it>x</it> 59 646 Cyr <it>Gl</it> 392<sup>P</sup>

: <gk>kateskopeWen</gk> 14

: <gk> kateskopeuon</gk> 509

: <gk>apEskko/peuen</gk> 118` -537 730

: <gk>apeskopeusen</gk>30-321<sup>mg</sup>

: <gk>apeskopesen</gk> 30)

: <gk>kateskol<sup>p</sup> en</gk> 458

| <gk>au)tou=</gk>] + <gk> autw</gk> 799

| <gk> maqein</gk>] <gk>idein</gk> 82-135 73-500 19 <it>f</it><sup>-129</sup> <it>n</it>-<sup>628</sup> 30`-85<sup>mg</sup> 392 55 130 799 <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7 Ruf <it>Ex</it> II 4 Arm

: <it>observans eum scire</it> Bo

:> 72 761

|  > <gk>ti/</gk> A 135 131 30` 121 799

| > <gk>to/</gk> 54-414

|<gk>au\tw=</gk>]

: <gk> auton</gk> 75

: <gk>autou</gk>*vid)

: <gk>auto</gk> 58-35* 16 <it>b</it> 610 18 799 (sed hab Compl)

:> 53, 30`

   5
: <gk>kateteuh</gk> 246

<gk>de/</gk>] > 56*-246 130 799 72

+ <gk>kai</gk> 56*-246 130 799

|> <gk>lou/sasqai</gk> 458

| <gk>e)pi/</gk>] : <gk>eis</gk> 16 Bo

: <it>ad</it> <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7

: <gk>para</gk> 77 106

| potamo/n</gk> 1 (0)] ms:parabl. 2 (0) 73`-413-55O<sup>txt</sup> 53-129 128 <sup>Lat</sup>GregIl <it>Tr</it> 7

I > <gk>ai</gk> 761 527

|au)th=s</gk>] <gk>auth</gk> 761 sup ras 551

: > 72<sup>txt</sup>-82<sup>txt</sup> 57 106-610 628 127

:post <gk>pareporeu/onto</gk> tr 426

|<gk>eporeuonto</gk> 126

| para\ to\n potamo/n] <gk>en</gk> <gk>tw</gk> <gk>potamw</gk> 126<sup</sup></sup>

| para/] <gk>epi</gk> A 135-381` 57-761 125 56`-664 628 30 134 121 130 799 == Compl

: <gk>eis</gk> 610

| <gk>idousai</gk> 77*

| > <gk>th/n</gk> 1 (0) 14-78*-126<sup</sup></sup>-552 53*-56* 321 68` (sed hab Ald)

| qi=bin] <gk>qhkhn</gk> Compl

|<gk>e)n tw=i e)/lei] <gk> para</gk> <gk> to</gk> <gk>elos</gk> 85<sup>txt</sup>-l27<sup>txt</sup>-321-344<sup>txt</sup> <sup>Lat</sup>GregIl <it>Tr</it> 7

:> Aeth<sup>P</sup>

| > <gk>th/n</gk> 2 (0)] 118`-537 56* Arm

| a(/bran] <gk>abron</gk> 126<sup</sup></sup>

: <gk>maian</gk> 318

:+ <gk>auths</gk> 426 Ach Arab Sa<sup>3</sup> Syh == <9M>9

| > <gk>a)nei/lato</gk> -- (6) <gk>de/</gk> 126<sup</sup></sup>

| a)nei/lato] <gk>aneiletol</gk> <it>oI</it>-135 <it>C</it>`'<sup>-126<sup</sup></sup></sup> 108 <it>d</it><sup>-610</sup> 628<sup>c</sup> 321 <it>t</it><sup>-84</sup> 128` 18<sup>c</sup> 55<sup>c</sup> 646 == Ald

: <gk>aneilen</gk> 458 Cyr <sup>Gl</it> 392

: <gk>anhlen</gk> 458

: <it</sup>uscipere</it> Arm Bo<sup>B</sup>

| <gk> au)th/n</gk>] <gk>auto</gk> 458

: > 628

   6
<gk>anoicas</gk> 58*-376-708 458

| paidi)on</gk>]

+< (^ Syh) <gk>to</gk> 376 128` Arm Syh == <9M>9

+< <gk>kai hn</gk> 15

: <gk>paidi[...]on</gk> 53*

+ (^ 64)

<gk>kai idou paidion<</gk> F<sup>b</sup> 64 <sup>mg</sup> == <9M>9

+ (^ Syh)

<gk>kai hn to paidion</gk> 376 630 Arm Syh

| klaion]

: <gk>klaionta</gk> 75*-458

: <gk>kaion</gk> 19* 527*

:> 799

post <gk>qibei</gk> tr 527 Bo<sup>B</sup>

| e)n th== qibei] en th <gk>qhkh</gk> Compl

:sub  Syh == <9M>9

| h/ quga/thr faraw/ ~</gk> == Sam] sub  Syh == <9M>9 Tar

| kai) e)/fh</gk>] sub  Arm<sup>ms</sup>(mend)

: <gk>kai eipen</gk> 135-381` 126-500 125 56`-664 <it>n</it><sup>-158</sup> 55

| kai) 2 (0)]

ms:parabl. (7) 1 (0) 53

| tw=n paidiwn/ tw=n ~braiwn] <gk> twn</gk> <gk>ebraiwn</gk> <gk> to</gk> <gk>paidion</gk> 126

:tr 708 551*

| <gk>touton</gk> 458

7
<gk>kai\ eipen] <gk>eipe(n)</gk> <gk>de</gk> <it>b</it><sup>-537</sup> <it>n</it> <it>x</it> 392 <sup>Lat</sup>cod 100 (sed hab Compl)

+ <gk>de</gk> 537

+ <gk>auth</gk> 55

| <gk> autou</gk> <gk> h</gk> <gk> adelfh</gk> 19 619

|</gk> > <gk>th=| qugatri) faraw/</gk> 55

| <gk>qelhs</gk> 376 14`-131-500 458 30 55

| soi 1 (0)] ms:parabl. 2(0) 313

| <gk> trefousan</gk> <it>x</it>

|</gk> > <gk>e)k tw=n )ebraiwn 72 52`-126-761

| e)k] <gk>apo</gk> 75

| kai) 2 (0) ] <gk>tou</gk> 52`-761

| qhla/sei] <gk>qhlash</gk> 52<sup>c</sup>-615-761 56 55 Aeth

: <gk> qhlasai</gk> 52*

: <gk>qhlaqh</gk> A

| > <gk</sup>oi 2(0)] 78 59 Aeth

| paidi)on]

+ <gk>touto</gk> <it>b</it> Aeth (sed hab Compl): ex .9

  
8
<gk>h/ de) eipen] <gk>eipe(n)</gk> <gk>de</gk> F 58` 25<sup>txt</sup>-57`-77 56<sup>c</sup>-129-246 <it>n</it><sup>-628</sup> <it>y</it><sup>-527</sup> 130 646` == Compl

: <gk>kai</gk> <gk>eipen</gk> M 64<sup>mg</sup>-135-381` 73-126-500 <it>b</it> 106 53`-56* 628 46-84 527 18 509 <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7 == Ald

| eIpen -- faraw/] <gk> qugathr</gk> <gk> faraw</gk> <gk> eipen</gk> <gk>auth> 76

:> <gk>au)th=| -- faraw/</gk> 107`-125

:> <gk>au)th=</gk> B 246 Arab Arm

:> <gk>h/ qug. faraw

*****[problem area?]
/</gk> 44` 619 Cyr <it> Gl</it> 392

| <gk>h(</gk> 2 (0) -- <gk>e)ka/lesen] <gk>fe<sup>r</sup></gk> <gk>poreuo<sup>u</sup></gk> <gk>efer</gk> 458

| <gk>faraw/</gk> ms:parabl. (9) 422

|<gk>apelqousa</gk> 64<sup>mg</sup>-82 <it>b</it> <it>d</it><sup>-610</sup> 321<sup>mg</sup> <it>t</it> 55 509 Cyr <it>G1</it>392 Aeth<sup>C</sup>

| > h( 3 (0)] Sixt

| <gk>tou</gk>

<gk>paidi/ou</gk>] litt <gk>tou</gk> 1<pai</gk> sup ras 15


  
9
eipen de]

: <it>dixitgue</it> <sup>Lat</sup>cod 100

: <it>et</it> <it>dixit</it> GregIl <Yr</it> 7 Ruf <it>Ex</it> II 4

| pros authn</gk>]

<gk>auth</gk> <it>n</it> Cyr <it>Gl</it> 392 <sup>Lat</sup>cod 100 GregIl <it>Tr</it> 7 == <9M>9

| quga/thr]

+ <gk> tou</gk> <gk>paidiou</gk> 761*

|<gk>diath/rhso/n moi] <it>cape</it> Arm

:> <gk>moi</gk> 1 (0)] Ach Bo<sup>A*</sup>- Sa == <9M>9

| > <gk>tou=to</gk> 246 55 509 Arm

| > <gk>moi</gk> 2 (0)] 414 Cyr <it>Gl</it> 392 Aeth<sup>R</sup>

| e)gw/ de/] <gk>kai</gk> <gk>egw</gk> 619

| de\ dw/sw] <gk>didwmi</gk> 392

: <gk>de</gk> <gk>didwmi</gk> 799

| misqo/n] + <gk</sup>ou</gk> 376` <it>z</it> Arm Co == <9M>9

|</gk> > <gk>elaben -- paidion</gk> 2 (0) 246

| e)qh/lacen]

: <gk>eqhlasen</gk> M 59 <sup>Lat</sup>cod 100 Aeth Arm Syh

: <gk>eqhlacon</gk> 537

| au)to/</gk> 2 (0)]

: <gk>autw</gk> 376 509

: <gk>auton</gk> 75*

: <gk>au<sup>t</sup></gk> 458


  
10
<gk>a\drunqe/ntos de/]

+<gk>kai</gk> 58<sup>mg</sup> 106

| : <gk>andrunqentos</gk> F<sup>a</sup> M <it>O</it>`"<sup>-29 58<sup>mg</sup> 64<sup>c</sup> 426*</sup> <it>C</it>`"<sup>-52` 54 77 313</sup> <it>b</it> <it>d</it><sup>-106</sup> <it>f</it><sup>-129</sup> <it>n</it> 30` 46-74-84 <it>x</it> <it>y</it><sup>-121</sup> 68`-120 18 59 130 319 509 646` Cyr <it>Gl</it> 392<sup>F</sup>

: <gk>andrusqentos</gk> 509*

: <gk>andruqentos</gk> 708 75 30 71<sup>c</sup>

: <gk>andriqentos</gk> 58 458 799

: <gk>andrwqentos</gk> 414` 59

: <gk>adruqentos</gk> 52-54

| <gk>de/</gk> 1 (0)] > 58<sup>mg</sup>

+ hdh</gk> Cyr <it>Gl</it> 392<sup>P</sup>

|<gk>au)to/]

: <gk>auton</gk> 246

| <gk>faw</gk> 646

| e)genh/qh]

: <gk>egennhqh</gk> 313 314 30 630 130

: <gk>egeneto</gk> 129 == Compl

| au)th=]

: <gk>auths</gk> 458

| e)pwno/masen de/]

+<gk>kai</gk> <gk>eponomasen</gk> 458 <sup>Lat</sup>Ruf <it>Ex</it> II 4

: <gk>wnomase</gk> <gk>de</gk> 126

| Mwush=n F<sup>b</sup>]

: <gk>Mwush</gk> A F M 29-82-376-707* 118`-537 30-85-127-343` <it>y</it> 55 130 509

: <gk>mwshn</gk> 15-72-381` 57-422 53` <it>n</it><sup>-628</sup> 46 18 59 799

: <gk>mwsh</gk> 64*(vid)-135-426-708 <it>C</it>`"<sup>-57 414` 422</sup> 19` <it>x</it> 646 (sed hab Compl)

: <gk>Mwusshn</gk> 68`

|<gk>le)gousa</gk>]

+<gk>oti</gk> 56<sup>c</sup>-129-246 628 84 <sup>Lat</sup>cod 100 Ruf <it>Ex</it> II 4 Aeth Syh == Compl <9M>9

| "<gk>au)to/n] > F 58-707 392 59 130 509

| aneilomhn</gk>]

: <gk>aneilamhn</gk> 82 F 58-707 392 59 130 509 85-127-343`

: <gk>anelabomhn</gk> 708

+<gk>auton</gk> F 58-707 392 59 130 509 708

: <gk>auto</gk> 85-127-343` 78 30-321

: <gk>autw</gk> 30

:(~)A <gk>F<sup>b</sup> M 64-376-<it>oII</it><sup>-82`</sup> <it>C</it>`"<sup>-52` 57* 78 126 761</sup> <it>d</it><sup>-610</sup> 56 75 730 <it>t</it><sup>-46</sup> <it>x</it> <it>y</it><sup>-392</sup> 55 76` Cyr <it>Gl</it> 392 Aeth Arab Arm Co Syh == <9M>9 (~)


  
11
<gk>e)ge/neto</gk>] > 53`

: <gk>egenhqh</gk> 509

: <gk>de</gk>] > 376 53`

|<gk>tai=s</gk> 1 (0)] ms:parabl. 2 (0) 16

| h/me/rais</gk>] bis scr 55*

| tai=s pollai=s</gk>] sub  Arm<sup>mss</sup> Syh

:> F<sup>b</sup> 72 129 799 == <9M>9

:  post <gk>e)kei/nais</gk> (~)708 422 19 <sup>Lat</sup>cod 100(~)

+<gk>hmerais</gk> 16<sup>c</sup>

| > <gk>e)keinais</gk> Aeth Arm

| : <gk>ginomenos</gk> 664*

: <gk>genamenos</gk> 75*

| Mwush=s]

: <gk>mwshs</gk> 15-72-135-426 25-77-126-414`-552 <it>d</it><sup>-44</sup> 53` <it>n</it><sup>-628</sup> <it>x</it> 121 130

: <gk>mwusshs</gk> 68`

| e)ch=lqen</gk>] > 59

: <gk>hlqe</gk> 392

:+ <gk>de</gk> 527

| tou\s</gk> <gk>ui)olu\s</gk> <gk>)Isra~l</gk>] sub  Syh<sup>L</sup>

:+ metob Syh<sup>T</sup>

: > 426 318 59 <sup>Lat</sup>cod 100 Aeth == <9M>9

| <gk>de/</gk> 2 (0)] 54

| ton po/non]

: <gk>twn</gk> 707 54 53 458 30-321 18

(<gk>ton</gk> 30-321*)

: <gk>ponwn</gk> 707 44 53 458 30-321 18

: <gk>topon</gk> 46

| ora]

: <it>invenit</it> Aeth

| anqrwpon Ai)gu/ption]

+<gk>tina</gk> <it>C</it>`"<sup>-126</sup> 646 54*

<gk>aiguPtion</gk>

(<gk>aigupteion</gk> 54*)

+<gk>andra</gk> <it>C</it>`"<sup>-126</sup> 646

| anqrwpon] <gk>paidion</gk> 107`-125

: <gk>tina</gk> 126; > Chr X 325

+<gk>tina</gk> 82

| <gk>eguption</gk> 376

| <gk>tina</gk>] > 72 52`-126-761 509 Cyr <it>Gl</it> 400<it>P</it>

+<gk>aiguption</gk> 376

| )ebrai=on] <gk>ebraiwn</gk> 29*-376-618 25 30 128

:> 392 59

:+<gk>ena</gk> 56`-129

| tw=n e)autoil a/delfw==n]

<gk>ton</gk> <gk>eautou</gk> <gk>adelfon</gk>68`-120 (sed hab Ald)

(<gk>adelfwn</gk> 122*)

: <gk>twn autou adelfon</gk> 30

: <gk>ton autou</gk> ad<sup>e</sup> 458

: <gk>ton adelfon autou</gk> 618 85

|<gk>tw=n</gk> 1 (0)] <gk>to</gk> 314*

| e)autou a/delfw=n] <gk>autou</gk> <gk>adelfwn</gk> 56 75 730

: <gk>adelfwn</gk> <gk>autou</gk> A F M 29`-135-376-<it>oI</it><sup>-618</sup> <it>C</it>`" <it>d</it> 129-246 127-321-343` <it>t</it> 71 <it>y</it> 18 59 76` 509 646 Cyr <it>Gl</it> 400 verss == Compl <9M>9

<gk>(eautou</gk> Cyr<sup>P</sup>)

| tw==n ui)w==n)Israh/l</gk>] pr <gk>twn ebraiwn</gk> 64<sup>mg</sup>

:sub  Syh

: <gk>tw=n</gk>] > 118`-537

:> <gk>ui)w=n</gk>] > 59*

:> 58 75 == <9M>9


  
12
<gk>peribleWa/menos de/]

+<gk>kai</gk> <gk>peribleWamenos</gk> <it>b</it> <sup>Lat</sup>cod 100 (sed hab Compl)

: > de/ 52` 761 646

ora] : <it>videbat</it> Arm

: <gk>ouqena</gk> 527

kai patacas]

: <gk>de</gk> M b n-628-527 18 55 Chr X 325 (sed hab Compl)

| <gk>to/n</gk> -- fin] <gk> auton</gk> <gk> katexwsen</gk> <ammw</gk> Phil III 141

| e)/xruWen au)to/n</gk>] pr <gk>exousen</gk> 458

: > <gk>au)to/n</gk> 59 Phil I 121

| ammw] : <gk>wammw</gk> 85-127-321<sup>txt</sup> 343`


  
13
: <gk>ecelqonti</gk> 799

| <gk>th=| h/me/rai] > 376: homoiot; bis scr 628(|)

| o(ra] : <it>videbat</it> Arm

: <gk>invenit</gk> Aeth

| <gk>andras</gk>] > 708 Chr X 325

| > <gk>)*ebraious</gk> A*(vid) l2l<sup>txt</sup>

|<gk>d1aPlhktiZolme/nous] + pros allhlous <it>x</it>

| legei] + <it>moyses</it> Aeth<it>-R</it>

| a)dikou=nti] : <gk>eni</gk> Chr X 325

| dia/] : <gk>ina</gk> 19` Cyr <it>Gl</it> 401 (sed hab Compl)

| tu/pteis</gk>] pr <gk</sup>u</gk> B 29-58-82-376 19` 53`-129 628 <it>y</it><sup>-121</sup> <it>z</it> 59<sup>c</sup> 130 799 Cyr <it>Gl</it> 400<sup>P</sup> 401 == Ra Tar

: <gk>tupths</gk> 56` 55

| <gk>plhsion</gk>] + <gk</sup>ou</gk> 15-426 78 <it>n</it><sup>-628</sup> <sup>Lat</sup>cod 100 Tert <it>Marc</it> IV 28 Arab Co Syh ^^


  
14
<gk>eipen 1 (0)] <gk>pros</gk> <gk>auton</gk> Cyr <it>Gl</it> 401 (sed hab 400)

+<gk>autw <it>n</it><sup>-628</sup> Aeth Sa<sup>3c</sup>

|<gk>tis] : <gk>ti</gk> 376-618

+<gk>enim</gk> <sup>Lat</sup>cod 100

| <gk>kate/sthsen]

+<gk>eis</gk> 64<sup>mg</sup>-426 Arm<sup>ap</sup> Syh ^^

+<gk>andra</gk> 64<sup>mg</sup>-426 Arm<sup>ap</sup> Syh ^^

^ 64 Arm<sup>mss</sup> Syh

+ ^ <it>virum</it> Arm<sup>te</sup>

| a)/rxonta] : <gk>krithn</gk> Luc l2.l4<sup>te</sup> ClemR 4<sup>ap</sup>

: <gk>dikasthn</gk> Luc l2.14<sup>ap</sup>

| kai) dikas~n] <gk>h</gk> <gk>meristhn</gk> Luc l2.l4<sup>te</sup>

:] > Luc l2.14<sup>ap</sup>

| kai</gk> 1 (0)] <gk>h</gk> F ClemR 4<sup>ap</sup> <sup>Lat</sup>PsHi <it>Ep</it> II 1 quodv <it>Prom</it> 1 Tert <it>Marc</it> IV 28

|<gk>h/mw==n</gk> Act 7.27]

: <gk>umwn</gk> 44`

: <gk>hmas 58*-72-82`-376*-381` <it>C</it>`" <it>b</it> 53`-56*-246 <it>n</it> 30` 74 619 121-527 68`-630 55<sup>c</sup> 76 646` Luc 12.14 Chr passim Cyr <it>Gl</it> 400 (sed hab 401) Procop 520

| <gk>mh/</gk> F<sup>a</sup>] <gk>h</gk> A F M 15*-29`-135-376`-<it>oI</it> <it>C</it>`"<sup>-77* 126</sup> 56`-129 <it</sup></it><sup>-30`</sup> 318` 18 55 76` 130 509 646` Cyr <it>Gl</it> 400 401 <sup>Lat</sup>ClemR 4 Aeth Bo Syh ^^

: <it</sup>i</it> Arm

|me su/</gk>]

me : <gk</sup>oi</gk> 319

: <gk>et me</gk> quodv <it>Prom</it> 1

:(~)<sup>Lat</sup>cod 100(~)

: <gk</sup>u/</gk>] > 426-707 25-52`- 54*-126-313` 44 53` 321 84 Chr X 325 (sed hab passim) Aeth<sup>CG</sup> Arm Syh

| qeleis <gk</sup>u</gk> 381` 458

| qe/leis] <gk>qelhs</gk> 58-376 108 56` 84 (sed hab Compl)

: <gk>legeis</gk> 64<sup>mg</sup> Syh ^^

| o(/n -- e)xqe/s] <gk>ws</gk> <gk>xqes</gk> Chr X 325

|</gk> o(\n <gk>tro/pon</gk>] bis scr 126(|)

| a)nei=les] : <gk>aneilon</gk> 78*(vid)

: <gk>eiles</gk> 619

:post <gk>eKqes</gk> (~)509 Arm(~)

+ ras 4 litt 25

| e)xqe/s / to\n Ai)gu)Ttion</gk>] > <gk>to/n</gk> Chr X 325 (sed hab I 473 XVII 181)

: (~)A F M <it>O</it>`<sup>-126 707</sup> -64 <it>C</it>`" 118`-537 56` <it</sup></it><sup>-30`</sup> 84-134-370 <it>y</it><sup>-527</sup> 18 76` 130 646 Cyr <it>Gl</it> 400<sup>F</sup> 404 <sup>Lat</sup>cod 100 Aeth Co Syh(~)

| e)xqe)s</gk> B* F M 64*-708-<it>oII</it><sup>-7O7</sup> 56-129 134-370 318 407-630 Act 7.28 ClemR 4<sup>te</sup>]

<gk>th xqes</gk> 509

:sub  Syh ^^

: <gk>xqes</gk> Chr I 473 XVII 181 Cyr <it>Gl</it> 400 404 rell

| : <gk>mwshs</gk> 64*-1 35-426-708 25*-52`-126-313`-500-551 <it>d</it><sup>-44</sup> 53` <it>n</it>

: <gk>mwusshs</gk> 122

| kai eipen] <gk>kai</gk> <gk>legei</gk> <it>b</it> 392 (sed hab Compl)

: > Ach

| ei)</gk>] pr <gk>w</gk> 59

: > Bo

|<gk>outws] : <gk>outw</gk> 126-551

: > <sup>Lat</sup>cod 100

| gegonen emfanes C`"

| emfanws</gk> 458

| tou=to</gk>] sub  Syh

> Ach Arm Sa == <9M>9


  
15
> init -- <gk>Mwush=n <it>x</it>

|</gk> > init -- <gk>touto</gk> 16-54<sup>txt</sup> Aeth<sup>-C</sup>: homoiot

| h)/kousen de/] +<gk>kai</gk> <gk>hkousen</gk> 106 53`

:> de/ 422

| faraw(</gk> 1 (0) ] farw 129*

post <gk>tou=to</gk> (~)Cyr <it>Gl</it> 400(~)

| to rhma touto</gk>] > <gk>touto</gk> 125 Chr X 325 Arm

: > 610 458

| e)ch/tei</gk>]

+<it>pharaoh</it> Aeth<sup>-CR</sup>

| a/nelein] +<gk>auton</gk> 107` 458 <it>t</it>

| Mwush=n] <gk>ton</gk> <gk>mwshn</gk> 426 53*-664 75<sup>C</sup>-458

: <gk>ton</gk> <gk>mwush</gk> 53<sup>C</sup>

:+< <gk>ton</gk> F<sup>a</sup> 58-376-381` <it>b</it> <it>d</it><sup>-106</sup> 56`-129 75*-628 343<sup>C</sup> <it>t</it> <it>x</it> 121-527 18 55 76` 130 799 == <9M>9

: <gk>mwusin</gk> 135

: <gk>mwusshn 68`

: <gk>auton</gk> 72 106 509

| Mwush==s] <gk>mwshs</gk> 64*-72-135-426 14`-126-500 53` 75 18

: <gk>mwusshs 68`

:> 458

|<gk>faraw/ 2 (0) ] <gk>autou</gk> 707

| katw/ikhsen]

: <gk>wkhsen</gk>

(<gk>wkisen</gk> 68)

B 15 53`-56* <it>n </it> 392 68`-120` 55 130 (sed hab Ald) == Ra

| e)n gh==] <gk>eis</gk> <gk>ghn</gk> 15` <it>x</it>

| Madia/n 1 (0)] Compl Syh]

: <gk>madiam</gk> Phil I 115 Cyr <it>Gl</it> 193 400 rell == Ra ^^

: contra <9M>9

:+ ras 2--3 litt 75

ms:parabl. 2 (0) M 72-426 77<sup>txt</sup>-131 <sup>Lat</sup>cod 100 Ach Sa<sup>3</sup> Syh<sup>L<sup>txt</sup>T</sup> == <9M>9

| e)lqw(n de/]

<gk>kai</gk> <gk>elqwn</gk> 125 <it>x</it>

:+ <gk>katw<sup>k</sup></gk> 458

| ei)s gh=n]

<gk>en th gh</gk> Cyr <it>Gl</it> 400 (sed hab 193)

: <gk>en</gk> <gk>gh</gk> 125 246 509 Arm

| Madia/n 2 (0)] Compl <sup>Lat</sup>quodv <it>Prom</it> 1 Syh<sup>L<sup>mg</sup></sup>

<gk>madiam</gk> Cyr <it>Gl</it> 193 400 rell == Ra

| e)ka/qisen</gk>] +< <gk>kai</gk> 72-426 <sup>Lat</sup>cod 100 Syh == <9M>9

: <gk>ekaqhto</gk> <it>n>

(: <gk>ekaqito</gk> 458)

+<gk>de</gk> 131


  
16
<gk>Madia/n</gk> Compl Syh] <gk>ioqor l8<sup</sup>up Iin</sup> > 76`

: <gk>madiam</gk> Cyr <it>Gl</it> 193 400 rell == Ra

| > <gk>h)san <it>O</it> Syh == <9M>9

| e(pta\ qugate/res</gk>] (~)458(~)

+ (^ Syh)

<gk>hsan</gk> <it>O</it><sup>-426</sup> Syh ^^: contra <9M>9

| poimainousai -- au)tw=n 1 (0)] sub  Syh<sup>L</sup> == <9M>9

+ metob Syh<sup>T</sup>

| > <gk>ta/</gk> 1 (0)] 76

| tou= patro(s au)tw=n</gk> 1 (0)] F<sup>b</sup> <it>O</it><sup>-58</sup>-29-7O7<sup>txt</sup>-708 <it>cI</it> 118`-537 106 53` 628 121 799 Cyr <it>Gl</it> 193<sup>P*</sup> <sup>Lat</sup>cod 100 Ach Aeth Arm Sa<sup>3</sup> Syh]

+<<gk>ragouhl</gk> 46<sup>c</sup> 509

+<<gk>ioqor</gk> A F <it>d</it><sup>-106</sup> <it>n</it><sup>-628</sup> <sup>t</sup><sup>-46<sup>c</sup></sup> 318` 76` Cyr Gl<it></it> 193<sup>F</sup> Bo

: <gk>iwqwr</gk> 76 319*

: <gk>ioqwr</gk> 84 318 319<sup>c</sup>)

+<gk>iothor et raguhel</gk> <sup>Lat</sup>codd 94--96

+<gk>iothar et raguhel</gk> <sup>Lat</sup>cod 91

+<gk>iorqor</gk> 551*

+<gk>iwqwr 68`-120`

+<gk>ioqwr</gk> 15-64*-381` 14-25-52`-54-131-313-422-500 19` 527 59 646 Cyr <it>Gl</it> 193<sup>P<sup>c</sup></sup>

+<gk>ioqor</gk> Cyr <it>Gl</it> 400 rell == Compl Ra

| au)tw=n 1 (0)] <gk>autou</gk> Sixt

| > <gk>parageno/menai -- fin] 7O8<sup>txt</sup> <it>cI</it> 509: homoiot

| : <gk>paragenamenai</gk> 707 75 392

| > de/ 2 (0) 106(||)

| h)/ntloun] : <gk>hntlhsan</gk> 76 Bo;

<it>hausivit</it> Aeth

| e)/ws]

+<gk>oun</gk> 53

+<gk>ou</gk> 708(<sup>mg</sup>) 664 <gk>799

| e)/plhsan]

: <gk>eplhrwsan</gk> 72-707 118`-537 84 121 130

: <it>implevit</it> Aeth

| decamena/s]

+<gk>ta</gk> 75

: <gk>pothsthria</gk> 75

|<gk>potisai]

+ ras ca 7 litt 319

| au)tw=n 2 (0)]

+<gk>ioqor</gk> A<sup>c</sup> <it>b</it> 82 56`-129 392 128` 55 130 799 Cyr <it>Gl</it> 400 Ach Sa == Compl Ra

+<gk>ioqwr</gk> 15-64<sup>mg</sup> 19<sup>c</sup>-108 527 319 Cyr <it>Gl</it> 193

+<gk>iwqwr</gk> 19* 68`-120` 76


  
17
<gk>parageno/menoi] > 44 128

: <gk>paragenamenoi</gk> de 707 392

: <gk>paragenamenos de</gk> 75*

: <gk>kai</gk> 44 125

+<gk>elqontes</gk> 44;

+<gk>apelqontes</gk> 125

:de] > 128 44 128

| <gk>poimainontes</gk> 628

| e)ce/balon]

: <gk>eceballon</gk> B M 58-82`-135 118-314<sup>c</sup>-537 628 <it</sup></it><sup>-730</sup> 392-527 120` 18* 76<sup>c</sup> 130 319 509 Cyr <it>Gl</it> 193<sup>F</sup> 400<sup>F</sup> <sup>Lat</sup>cod 100

: <gk>ecebalen</gk> 44

: <gk>ecebalan 19 799

: <gk>eceilon</gk> 125

| a\nasta/s -- au)ta/s 2 (0)] > 130: homoiot.

| de] > 120*; bis scr 126(||)

: <gk>mwshs</gk> <it>O</it><sup>-58</sup> -135 <it>C</it>-126 53` <it>n</it><sup>-628</sup>

: <gk>mwusshs</gk> 68`

| autas</gk> 2 (0)]

+<gk>kai</gk> 56<sup>mg</sup>-129 246 Ach Sa

+<gk>ta</gk> 56<sup>mg</sup>-129 246 Ach Sa

+<gk>probata</gk> 56<sup>mg</sup>-129 246 Ach Sa

+<gk>autwn</gk> 56<sup>mg</sup>-129 246 Ach Sa

+<gk>apo</gk> 56<sup>mg</sup>-129 246 Ach Sa

+<gk>twn</gk> 56<sup>mg</sup>-129 246 Ach Sa

+<gk>poimenwn</gk> 56<sup>mg</sup>-129 246 Ach Sa

|<gk>kai 1 (0) ms:parabl 2(0)] A F 29`-135-426 <it>b</it> <it</sup></it> <it>x</it> 121` 128` 59 509 Aeth Arab Bo Syh == <9M>9

|autais] > <sup>Lat</sup>cod 100 Sa<sup>1</sup>

: <gk>autas</gk> 126 53

|: <gk>epotisan</gk> 72-<it>oI</it> <it</sup></it><sup>-730</sup> 76 Aeth<sup>-F</sup>

: <gk>epothsan</gk> 30

| pro/bata]

+<gk>tou</gk> 29-135 126 56<sup>c</sup>-129-246 <it</sup></it> 84 630 646

+<gk>patros</gk> 29-135 126 56<sup>c</sup>-129-246 <it</sup></it> 84 630 646

| ><gk>au/tw=n</gk> Aeth Bo


  
18

 > init -- <gk>au/tw=n</gk>] > 730: homoiot

| parege/nonto de/]

: <gk>paregeneto</gk> de 82 551*

 <gk>kai pareg.</gk> 72 125 527

:> de/ ] > 59 <sup>Lat</sup>cod 100 Bo<sup>A</sup>

| R(agouh/l] <gk>ragoughl</gk> 246

: <gk>ioqor</gk> A 82 73-77<sup>mg</sup>-413<sup>mg</sup>-550-552<sup>mg</sup> 118`-537 <it>d</it><sup>-106</sup> 85`<sup>mg</sup>-344<sup>mg</sup> 46*-74`-370 <it>x</it> 392 <sup>Lat</sup>cod 100 Ach Sa

: <gk>ioqwr</gk> 57<sup>mg</sup> 19` 84 527 319 Cyr <it>Gl</it> 196 (sed hab 400 Compl)

: <gk>iwqwr</gk> 76

: <gk>iorqor</gk> 552<sup>txt</sup>

+<gk>ioqor</gk> Syh<sup>Tmg</sup>

| o( de) erpen]

eipen de  118`-537

| o( de/]

<gk>ioqor</gk> 730sup lin

: <gk>kai</gk> 392 <sup>Lat</sup>cod 100

: > 500

| > <gk>au/tai=s] > <it>d</it> <it>t</it> == <9M>9

| ti -- 4.19 Aigu[pton] absc 381(||)

| ti) oti] dia ti</gk> B 15` 392 Epiph I 367 Syh

:> <gk>oti</gk> 54 Arm<sup>ap</sup>

| <gk>etaxunete</gk> (<gk>etaxunetai</gk>*) 761

| tou --</gk> fin] <gk</sup>hmeron tou elqein</gk> Epiph I 367

:> <gk>tou= <it>O</it><sup>-376</sup> 25 392


  
19

<gk>ai) de)] oi de</gk> 53(|) 458

: <gk>h</gk> de 82

: <gk>kai</gk> 106

| eipan]

: <gk>eipon</gk>A F <it>O</it><sup>-426</sup>-29`-82*-135-618 78-126<sup</sup></sup> 19` <it>d</it> 53`-246 75 <it</sup></it> 318-527 <it>z</it> 59 76` 130 509 Cyr <it>Gl</it> 196 (sed hab 400 Compl)

<gk>eipwn</gk> 376*

: <gk>eipen</gk> 71

: <gk>ei<sup>p</sup></gk> 458

+<gk>autw</gk> 64<sup>mg</sup> 246 <sup>Lat</sup>cod 100 Aeth Arab Bo

| anqrwpos] <gk>anhr</gk> Epiph I 367 ^^

:bis scr F

| Aigu/ptios] <gk>eguptios</gk> 537;

> 414*

| a\po/]

: <gk>ek</gk> 75 Cyr <it>Gl</it> 400 (sed hab 196) 426 Arab == <9M>9

+<gk>xeiros</gk> 426 Arab == <9M>9

| kai</gk>1 (0)] ms:parabl 2 (0)] Arab Bo<sup>B</sup>

| h)/ntlhsen</gk>]

: < ^ 64 Syh

: <gk>antlwn <it>O</it><sup>-72</sup>-64<sup>mg</sup> Syh == <9M>9

| > <gk>h/mi=n</gk> Epiph I 367 Arm

| <gk>epotisamen</gk> 72 107`-125 59

| ta pro/bata</gk>] pr <gk>hmwn</gk> Epiph 1 367

+<gk>hmwn</gk> B M <it>O</it>`-15` 77<sup>c</sup> 19` <it>d</it> <it>f</it> <it>n</it> <it>t</it> <it>x</it> 392-527 <it>z</it> 18 55 76` 130 799 Cyr <it>Gl</it> 400 (sed hab 196) <sup>Lat</sup>cod 100 Aeth Arab Arm Sa == Tar<sup>P</sup> Ra


  
20

 <gk>o( de)] kai</gk> 106

| tai=s qugatra/sin au)tou=] > 126 107`-125

: <gk>au<sup>t</sup></gk> 458

| > <gk>kai)</gk> 1 (0)] > A F M <it>oI</it>-135-707 <it>C</it>`"<sup>-77'<sup>c</sup></sup> <it</sup></it> 318 18 59 76` 646 Bo Sa<sup>1</sup>

| e)stin] + o anos 72 <it>z</it> (sed hab Ald)

| > <gk>kai) 2 (0)] > 376` 761 527 128 Arm Sa Syh == <9M>9

| ou(/tws] : <gk>outw</gk> M 458 127 128` 18

: <gk>outos</gk> 376 30 509 == <9M>9 Sam Tar<sup>O</sup>

: <gk>auton</gk> Phil III 177

: > B* 15` 75 730 527 Aeth<sup>CR</sup> Arm

| : <gk>katelipate</gk> 72 14`-54-131-414` 458 318

: <gk>kateleipate</gk> 318

: <gk>kateloipate</gk> 72 14`-131 458

| ton -- au/ton] > Phil III 177

auton

+<gk>kalesate</gk> Phil III 177

|to\n</gk> <gk>a)/nqrwpon]

: <gk>auton</gk> 72 126-413 <gk>z</gk> (sed hab Ald)

| > <gk>oun</gk> M 135 25-126-552<sup>txt</sup> 75 <it</sup></it> 527 18 646 Aeth == Ald <9M>9

| au/to/n]

: <gk>autw</gk> 54

: <gk>ton anqrwpon</gk> 53` <it>z</it> (sed hab Ald)

|<gk>o=pws fa/gh] <gk>fagein</gk> 126<sup</sup></sup>

: <gk>opws : <gk>faghtai</gk> 628

| opws]

: <gk>ina</gk> 799

+<gk>an</gk> Phil III 177

|<gk>a)/rton</gk>] pr <gk>ton</gk> 314

: <gk>artwn</gk> 54


  
21
: <gk>katwkhse(n)</gk> 84 318-527 76`

| Mwush=s] : <gk>mwshs</gk> 64*-72-135-426 <it>C</it><sup>-422</sup> 106 53` <it>n</it> <it>x</it> 121

: <gk>mwusshs</gk> 68`

| e)ce/doto</gk>]

+<<it>vir</it> Sa<sup>1</sup>

: <gk>ezedeto</gk> A 82* 127-343` 55*(vid)

+<gk>auton</gk> 72

+<gk>autw</gk> <it>O</it><sup>-72</sup> <it>d</it> 56<sup>c</sup>-129-246 <it>n</it><sup>-628</sup> <it</sup></it> <it>t</it><sup>-46</sup> <it>x</it>

| <gk>Sepfw/ran]

: <gk</sup>epforan</gk> 15 14`-131-422-500 <it>d</it> 53` 628 84 <it>x</it> 392<sup>c</sup>-527 68-122<sup>c1</sup> 55 76` 799 Bo

: <gk</sup>epfwra</gk> 72 246 509

: <gk</sup>ephora</gk> Sa<sup>1</sup>

: <gk</sup>ephpho=ra</gk> Sa<sup>3</sup>

: <it>zephoram</it> <sup>Lat</sup>codd 91 94--96

: <gk</sup>empfwra</gk> 78

: <gk</sup>emfora</gk> 7O7(vid) 314 458 128 18

: <gk</sup>empforan</gk> 75

: <gk</sup>emforan</gk> 54 == Ald

: <gk</sup>apfwra</gk> Ios <it>Ant 11 13.1<sup>te</sup>

:post <gk>th/n</gk> tr 426 == <9M>9

:post <gk>au/tou=</gk> tr Aeth

|<gk>au)tou=] > <it>x</it>

: <gk>autw</gk> 458

|<gk>Mwush==</gk>]

+<<gk>tw</gk> M 707 84 527

: <gk>tw mwusei</gk> 18 == Ald

: <gk>tw mwsh</gk> 426

: <gk>mwusei</gk> A 56* 120

: <gk>mwsh</gk> 25-126-313-615* 107` 53` <it>n</it> 619 121

: <gk>mwsei</gk> 135 52-78-413-615<sup>c</sup>-761

<gk>mwussei</gk> 68`

: <gk>autw</gk> 125 56<sup>c</sup>-129-246 Sa<sup>1</sup>

:> 72(|)

| gunai=ka</gk>]

+<<gk>eis</gk> 376 53` 128`


  
22
init -- <gk>gunh/</gk>] +<<gk>kai</gk> 106

: <gk>labousa de h gunh en gastri</gk> <it>b</it> (sed hab Compl);

> 126 == <9M>9

|de/] > 106 458

| : <gk</sup>ullabousa</gk> Cyr <it>Gl</it> 400<sup>P</sup>

| <gk>uion h gunh eteken</gk> 708

|<gk>h/ gunh/</gk>] sub  Syh

:] > 55 <sup>Lat</sup>cod 100 Sa<sup>3</sup>

+<gk>autou</gk> 628

| e)/teken ui)o/n</gk>] +<<gk>kai</gk> 426 == <9M>9

:sub ^ Syh

:] > 78<sup>txt</sup>

| e)/teken] <gk>egennhsen</gk> 130

+ <gk>de</gk> 126

+ <gk>ei</gk> Arab

|<gk>ui)o/n]

: <gk>arsen</gk> 376

+<gk>ei</gk> Sa<sup>1</sup>

+<gk>kai eteken</gk> 30

| e)pwno/masen]

: <gk>wnomase</gk> 126

: <gk>ekalese</gk> 58`

| to onoma autou (+<it>o</it> 126) <gk>mwushs</gk> (<gk>mwush 799

:mwshs</gk> 53` <it>n</it><sup>-628</sup> 321) 29-376 126 53` <it>n</it><sup>-628</sup> <it</sup></it> 799 Aeth Arm

|Mwush=s] : <gk>mwshs</gk> 64*-72-135-426 <it>C</it>`"<sup>-16 54 126 761</sup> 619 121 18

: <gk>mwusshs</gk> 68`

:sub  Syh<sup>T</sup>

:] > A F 15-618 16-54 628 509 Arab == <9M>9

|] > <gk>to/</gk> 68 (sed hab Ald)

| Ghrsa/m] : <gk>girsam</gk> 75

: <gk>gersam</gk> Sa<sup>1</sup>

: <gk>ghrsem</gk> Ald

: <gk>ghrsos</gk> Ios Ant II 13.1

|</gk> > <gk>egwn</gk>] > 131 (|) == Tar<sup>O</sup>

| > <gk>o(/ti</gk>] > A 15 <it>b</it> (sed hab Compl)

|<gk>pa/roliko/s]

: <gk>geiwras</gk> Phil II 245

|<gk>eimi</gk>] +<<gk>egw</gk> 107`-1 25 619

: <gk>gegona</gk> 707<sup</sup></sup>

+<gk>egw</gk> 75 71 Arm

| allotria| -- 4.24 fin] absc 646(||)

|</gk> fin] + (^ M</gk> 85-344-730;  343)

<gk>to de (kai to</gk> pro <gk>tol de 799) onoma tou deuterou (adelfolu autou</gk> 44)

<gk>ekalesen</gk> (> <it>oI</it> <it>C</it>`" 118`-537)

: <gk>elieZer</gk> (+ legwn 58 <it>x</it> 130) <gk>o gar (<gk>de</gk> 130)

<gk>Qeos tou patros mou bohqos mou</gk> (> <gk>b mou</gk> 53` 130) <gk>kai er(r)usato (<gk>er(r)usatw</gk> 130;

<gk>eceilato</gk> <it>x</it>) me ek xeiros (<gk>xeirhs</gk> 30) <gk>faraw F M <it>O</it>`<sup>-376</sup>-29` <it>C</it>`" <it>b</it> <it>d</it> <it>f</it><sup>-56<sup>txt</sup></sup> <it>n</it> <it</sup></it> <it>t</it> <it>x</it> 121<sup>mg</sup>-318` 630 18 55 59 130 799 <sup>Lat</sup>cod 100 Arab Bo Syh<sup>LmgT</sup>: ex 18.4

+<gk>eti de sullabousa</gk> (<it>et</it> pro <gk>e. de sull.</gk> Aeth) <gk>eteken uion deuteron</gk> (] > 76) <gk>kai epwnomasen</gk> (c var

: <gk>ekalese</gk> 527 Ald)

<gk>to onoma autou elieZer (eliaZar</gk> 76`

:+<gk>legwn</gk> 527 Aeth Ald)

<gk>ol gar Qeos tou prs mou bohqos mou kai eceilato (ezeileto</gk> 76

: <gk>echlato</gk> 82

<gk>er(r)usato</gk> 527 Ald)

<gk>me ek xeiros faraw</gk> 82 527 76` Aeth<sup>Fmg</sup> <sup>Hmg</sup> == Ald

+<it>peperit autem alium filium (is) vocavit nomen eius eliezer</gk> Sa<sup>3</sup><sup>mg</sup>


  
23
init -- <gk>h/me)ras]

+<gk>metas</gk> 46

+<gk>hmeras</gk> 46

+<gk>de</gk> 46

| h(me/ras ta\s polla/s]

+<gk>pollas</gk> 72 761

+<gk>hmeras</gk> 72 761

:> <gk>ta\s polla/s</gk>] > 458 799 <sup>Lat</sup>cod 100 Hi <it> Or</it> <it> in</it> <it> Is</it> <it> hom</it> V 3

| > <gk>e)kei)nas</gk>] > <sup>Lat</sup> Hi <it> Or</it> <it> in</it> <it> Is</it> <it> hom</it> V 3 Aeth Arm

| Ai)gu/ptou</gk>]

+<<gk>ekeinos o</gk> 500

:+<<gk>ths</gk> Phil <gk</gk></gk> 160 (sed hab 279)

: <gk>ekeinos</gk> 135

: <gk>Aiguptiou</gk> 799

: <it>aegyptiorum</it> Bo

| kateste/nacan]

: <gk>katestenacon</gk> F 318 59(vid) Arm

: <gk>katestenacan</gk> 126

: <gk>katestecen 71*

: <gk>estenazen</gk> Phil II 271 (sed hab 246 I 160 279) Tht I 1521 1925

: <gk>anestenazen</gk> 58`

| oi) ui)oi))Israh/l</gk>]

> <gk>oi)</gk>] >  707 126 44-107 53` 59 319

> 321(||)

:post <gk>e)/rgwn 10</gk>] (~)72(~)

| e)/rgwn</gk> 1 <gk>]

+<gk>twn</gk> 707 <it>f</it><sup>-56*</sup> Tht I 1521 (sed hab 1925) <sup>Lat</sup>cod 100 Bo<sup>A<sup>mg</sup></sup> Sa: cf Tar<sup>O</sup> et 6.9

+<gk</sup>klhrwn</gk> 707 <it>f</it><sup>-56*</sup> Tht I 1521 (sed hab 1925) <sup>Lat</sup>cod 100 Bo<sup>A<sup>mg</sup></sup> Sa: cf Tar<sup>O</sup> et 6.9

+<gk>autwn</gk> Bas II 620; ms:parabl. 2 (0)] 414-55l<sup>txt</sup> 628

| kai 2 (0)] ms:parabl. 3 (0)] 730 Tht I 1521 1925

|: <gk>ebohsan</gk> 75

| a\ne)bh</gk>] post <gk>au/tw==n</gk> (~)15`(~)

| autwn h bolh</gk> Or VIII 129

| h boh/]

<gk>h</gk>

: <gk>fwnh</gk> 68`-120` (sed hab Ald);

h : <gk>kraugh</gk> 130

:> <gk>boh 392*

 > 77*

| pro\s to\n Qeo/n]

: <gk>eti</gk> ton Qeon (> *) 78

:ad dnm <sup>Lat</sup>cod 100 Hi Ep XVIII a 2 == Tar;

om Ton Or Viii 129

+autwn 118`-537;

ad fin (~)619(~)

om apo 2 (0)] -- fin ] > 72-707 107' 125 76'


  
24
: <gk>hkousen</gk> 527

| o\ Qeo/s 1 (0)] <gk>ks</gk> 121 <sup>Lat</sup>cod 100 Ruf <it>Cant</it> 2 == Tar

:> Aeth<sup>R</sup>

post <gk>au)tw=n</gk> (~)<it>n</it>(~)

| to\n stenagmo/n</gk>]

+<<it>clamor eorum et</gk> Sa<sup>3</sup>

: <gk>twn</gk> (:1<ton</gk> 64-135-376 730)

: <gk</sup>tenagmwn</gk> 15-64-135-376-707 78-500-550`-761 106 53 85-730 <it>x</it> 318-392* <it>z</it> 18 59 76 799 Bas II 620 Or VIII 129 (sed hab Ald)

: <gk>tou stenagmou</gk> <it>n</it> Or III 226

: <gk>tous</gk> <gk</sup>tenagmous</gk> 72

| > <gk>au)tw=n</gk>] > 68 (sed hab Ald)

| o( Qeo/s 2 (0)] > 106 527 Aeth<sup>R</sup> == Ald

:post <gk>au/tou=</gk> (~)628(~)

| > <gk>au/tou=</gk>] > 77 799 == Tar<sup>P</sup>

| > <gk>kai 3 (0) 799 Aeth<sup>R</sup> == <9M>9<sup>L</sup> Tar

| <gk>isak</gk> B

| <gk>iakb</gk> 458


  
25
<gk>e)
pei==den]

: <gk>efeiden</gk> 318 319*

: <gk>eiseiden</gk> F M <it>oI</it> <it>C</it>`" 118` 56* <it</sup></it> 18

: <gk>eisiden</gk> A 29*-135 121 509

: <gk>eishden</gk> 321

:+<gk>ws</gk> 25

: <gk>eiden</gk> 25 59 799^^

: <gk>iden</gk> 628

: <gk>epolihsen</gk> 53`

| > <gk>o( Qeo/s</gk>] > Aug <it>Loc</it> <it>in</it> <it>hept</it> II 7<sup>te</sup>

| tous ui)ou)s</gk>]

+<<gk>epi 84

<gk>tois uiois</gk> 72 500 53` <it>n</it><sup>-628</sup>

+uious 344*(|)

|<gk>Israhl kai</gk>] > 25

|<gk>egnwsqh</gk> : <gk>epegnwsqh</gk> 19` 799

: <gk>emnhsqh</gk> 761 <it>x</it> Sa: ex .24

| <gk>autoli=s</gk>] autwn <it>x</it>

:> Sa


  
3
<gk</gk> kai\ Mwush=s]

+<gk>o</gk> de mwushs</gk> 44

: <it>moyses autem</it> <sup>Lat</sup>cod 100

: <gk>mwusshs</gk> 68`

: <gk>mwshs</gk> 64*-72-135-426 126-551 -552* <it>n</it><sup>-628</sup> 121 Phil II 1O4<sup>ap</sup>

| )Io qo/r]

: <gk>ioqwr</gk> (et post <gk>au/tolu==</gk> (~)78(~))

15-64*-618 14-25-52`-54-57-78-131-313`-422-500 84 318-527 59 319 Phil II 104<sup>U</sup>

: <gk>iwqor</gk> 376

: <gk>iwqwr</gk> <it>n</it><sup>-458</sup> 68` -120` 76 Eus VI 236

: <gk>iethro</gk> Aug <it>Trin</it> II 23

: <gk>ragouhl</gk> 46<sup>c</sup> 509

:] > 72 19` 106 Sa (sed hab Compl)

|> <gk>tou= gambrou= au)tou=</gk> Phil II 104

| gambrou==]

: <gk>penqerou</gk> F<sup>b</sup> 64<sup</sup>up Iin</sup> 72 14-126-550`-551*-739<sup>c</sup> 314<sup>c</sup> <it>d</it> 129<sup>mg</sup> 73O<sup</sup>up lin</sup> 46<sup>c</sup>(vid) <it>x</it> 318<sup>c</sup>-527 76` 799 == Ald Compl ^^

+<gk>penqerou</gk> <it>b</it><sup>-314<sup>c</sup></sup>

| > <gk>au/tou==</gk>] > 739<sup>c</sup>

| tou= i)ere)ws Madia/n</gk>] > <gk>tou==</gk> 15` 25 458 318 799

:] > 106

|<gk>Madia/n</gk> Compl <sup>Lat</sup>Aug <it>Trin</it> II 23 Syh]

: <gk>madiam</gk> Phil II 104 Cyr passim rell == Ra

|<gk>u)/gagen]

: <gk>hge</gk>(<gk>n</gk>) A F M <it>O</it>`-135-707 <it>C</it>`" 19` 56* <it</sup></it> <it>x</it> 527 18 59 76` 509 799 Phil I 222 Cyr <it>Ad</it> 937 <it>Gl</it> 412 (sed hab X 781) Syh (sed hab Compl)

: <gk>hre</gk>(<gk>n</gk>) 29

| ta`</gk> <gk>Pro/bata 2 (0)] > <gk>ta/</gk> Phil I 222<sup>F</sup>

:+<gk>autou</gk> Cyr <it>Ad</it> 937 (sed hab <it>Gl</it> 412 X 781) Aeth

| upo/]

: <gk>epi</gk> 72-376 77 Cyr <it>Ad</it> 937 X 781<sup>te</sup>

: <gk>eis</gk> <it>f</it><sup>-56*</sup> Cyr <it>Gl</it> 412 <sup>Lat</sup>cod 100 Aug <gk>Trin</gk> II 23 Arab Arm Syh == Compl

| > <gk>th/n</gk> Compl

| > <gk>kai) hlqen  <it>b</it> (sed hab Compl)

| hlqen]

: <gk>hlqon</gk> 628

: <gk>eishlqen</gk> 56<sup>txt</sup>; absc 56<sup>mg</sup>

| ei)s]

: <gk>pros</gk> 246

|<gk>to/</gk> -- fin]

<it>choreb</it>

<it>montem</it>

<it>dei</it> Aeth Arab Bo

| oros]

+<gk>tou</gk>

+<gk>Qeou</gk> F<sup>b</sup> M <it>O</it>-64<sup>mg</sup>-82 <it>b</it> <it>d</it> 56* <it>n</it> <it</sup></it> <it>t</it> <it>x</it> 527 <it>z</it> 18 76` 130 509 799 Cyr <it>Ad</it> 937 <it>Gl</it> 4l2 (sed hab X 78l) Eus VI 236 <sup>Lat</sup>cod 100 Aug <it>Trin</it> II 23 Arm Sa Syh == <9M>9 Sam

| xwrh/b</gk>]

+<<gk>en</gk> 527 509 Cyr <gk>Ad</gk> 937 (sed hab <it>Gl</it> 412 X 781) Eus VI 236 Arm

+<<gk>to</gk> (<gk>tw</gk> 53) 53`;

<gk>xorhb</gk> 68`-120`

<gk>xwrib</gk> 72

<gk>xorib</gk> 75 84

<gk>xwrhm</gk> 128

+<it>montem</it> <it>domini</it> <it>dei</it> Sa


  
24
<gk>t(jn st~;nagmoln~l a s ~s ~a s ~s ~~~~ ~~ ~~~~ ol~mw~s ~~ autOiJ ~~~</gk> 127-344) <gk>M</gk> 64 57(s nom)-73(s nom) 85(s nom)-127-321 -344

| diaqh/khs] (sunq] h/khs</gk> 64


  
25
<gk>e)etden] a`</gk> ( > 1 08) <gk>Q` (s`</gk> SyhT) <gk>eiden</gk> 108 Syh

| kai) e)gnw(/sqh au/toli==s] kai)</gk>

<gk>h/le)hsen au/tou/s Fb</gk>

Blankenship LXX Ex 3

 

3 1
<gk>gaj1br(J s] ra, i,iJfife] iJt(J S s peiqerol s</gk> 64 <gk>

| hgagen] a hlasen

 M</gk> 127-344;

<gk>...]</gk> set, 64


 
2
<gk>w(/fqh de/]

+<gk>kai</gk>

: <gk>wfqh</gk> Cyr <it>Gl</it> 412 (sed hab <it>Ad</it> 937 X 781) DialTA 77 <sup>Lat</sup>Cyp <it>quir</it> II 19

| de) 1 (0)]</gk> <it>d</it> 126

| au/tw=i F<sup>b</sup>]

: <gk>moysi</gk> <sup>Lat</sup>quodv <it>Haer</it> IV 22 Aeth<sup>P</sup>

: <gk>auto</gk> 120

: <gk>autos</gk> 407

:] > F Ath II 352 DialTA 77 Or III 135 IV 39 <sup>Lat</sup>Ruf <it>Or</it> <it>princ</it> II 8.3

:post <gk>kuri)ou</gk> (~)58-426 Eus VI 235 (sed hab 236) == <9M>9 Tar(~)

| a)/ggelos]</gk>

+<<gk>o</gk> 52`-313` Procop 524

| kuri)ou]

:+<gk>tou</gk> 376 Iust <it>Apol</it> LXIII 11

: <gk>Qu=</gk> 376 Iust <it>Apol</it> LXIII 11

: <gk>Qu</gk> x 799 Iust <it>Apol</it> LXIII 7 (sed hab <it>Dial</it> LX 4) Bo<sup>A</sup>

:] > Act 7:30<sup>te</sup> Cyr <it>Ad</it> 232<sup>P</sup> (sed hab passim) HymenHier 17

| e)n -- (3)</gk> fin] bis scr 135

| ek tou (ths</gk> 76) <gk>batou en flogi</gk> <gk>(-gh</gk> 319) <gk>puros</gk> 76`

|</gk> om <gk>e)n puri) flogo/s</gk>] > <it>b</it><sup>-108mg</sup> (sed hab Compl)

| puri) flogo/s]</gk>

: <gk>flogi

: <gk>flogei</gk> F

: <gk>flogh</gk> 707* 318

: <gk>puros</gk> A F <it>O</it>`-29`-</gk>135 <it>C</it>`" 108 <it>d</it> <it>n</it> 30` <it>t</it> <it>y</it> 128` 59 130 424 509 Act 7:30<sup>te</sup> Thess II 1:8<sup>ap</sup> Ath II 352 Cyr <it>Gl</it> 412 (sed hab passim) DialTA 77 Eus VI 235 (sed hab 236) HymenHier 17 Iust <it>Apol</it> LXIII 7 <it>Dial</it> LX 1 (sed hab <it>Apol</it> LXIII 11 <it>Dial</it> LIX 1 LX 4) Or III 135 (sed hab IV 39) Procop 524 Tht <it>Ex</it> 101 patr lat et verss == Ald Ra <9M>9

<gk>puri ek ths flogos</gk> 246

| e)k tou=</gk> <gk>ba/tou</gk> Tht <it>Ex</it> lOl<sup>ap</sup>]

<gk>en batw</gk> Iust <it>Apol</it> LXIII 11 <sup>Lat</sup>Ruf <it>Or princ</it> 11 8.3: cf Act

7:35

: <gk>ek ths batou</gk> 72 126-131<sup>c</sup> 53` 75 30` <it>x</it> 527 799 Ath II 352 Cyr X 781 (sed hab <it>Ad</it> 232<sup>RV</sup> 937 <it>Gl</it> 412) HymenHier 17 Iust <it>Apol</it> LXIII 7 Tht <it>Ex</it> lOl<sup>ap</sup>

:om <gk>e)k</gk> <gk>tou=</gk>] > Act 7:30 DialTA 77 Eus VI 235 s Or III 135 IV 39 Tht <it>Ex</it> lOl<sup>te</sup>

:om <gk>tou=</gk> Cyr <it>Ad</it> 232<sup>P</sup> Iust <it>Dial</it> LIX 1 LX 4 Sa

| tou= ba/tou]</gk>

+< (^ 64 Arm<sup>mss</sup> Syh) <gk>mesou</gk> <it>O</it><sup>-72</sup>-64<sup>mg</sup> 128 Arm Syh

+<gk>tou mesou b</gk> 630

+<gk>tw</gk> <gk>mwsei</gk> Or III 135

| o\ra]

: <gk>ewra</gk> 53`-56*-246 Arm

: <it>vidit moyses (> R) Aeth

+<gk>Mwushs</gk> DialTA 77

+<gk>mwshs</gk> Or III 135

|om <gk>oti</gk>] > 458

| o( 1 (0) -- puri 2 (0)] in rubo orderet ignis</gk> Aug <it>Trin</it> II 23

| o\ 1 (0) ]</gk>

: <gk>h</gk> F<sup>b</sup> 72 52`-126-131<sup>c</sup>-313`-552<sup>mg</sup> 537 527 76 Chr IV 680 X 73 DialTA 77 == Ald Compl

:] > 708 59

| kaietai]

: <gk>ekaieto</gk> 135(1 (0))-376 56` Chr IV 680 X 73 Cyr <it>Ad</it> 232 937 (sed hab <it>Gl</it> 413 X 781) DialTA 77 <sup>Lat</sup>Quodv Haer IV 22 Arm Bo == Compl

: <gk>ekaietw</gk> 376

:post <gk>puri</gk> 2 (O)] (~)527(~)

| om <gk>puri) 2 (0)] DialTA 77

| o( 2 (0) -- fin]

+<gk>kai ou katekaieto (<gk>katakaietai</gk> 53` Phil) 53` 76 Phil III 145 Chr IV 680 X 73

:] > 799

|

<gk>o( de]

+<gk>kai</gk> o</gk> Or III 135 Bo

: <gk>kai</gk> 1<h</gk> 72

: <gk>h</gk> de F<sup>b</sup> 126-131<sup>c</sup>-552<sup>mg</sup> 527 DialTA 77 == Ald Compl

+<gk>o</gk> 54

| ou/ katekai)eto]

: <gk>oukekatekaieto</gk> (litt <gk>t</gk> 1 (0) ex <gk>i</gk> corr) 59

: <gk>ou</gk>

: <gk>katakaietai</gk> 72 126 458 Or III 135 Syh(vid)

: <gk>katakeetai</gk> 458


 
3
init -- <gk>Mwush==s] <gk>o</gk> <gk>de</gk> <gk>mwshs <gk>eipe</gk> Iust <it>Dial</it> LX 4

: <gk>kai eipen en eautw</gk> 799

: <gk>kai eipen mwushs</gk> Carl 49 <sup>Lat</sup>Aug <it>Trin</it> II 23 Cyp <it>Quir</it> II 19 Quodv <it>Haer</it> IV 22

|: <gk>mwshs</gk> 64*-72-135-426 <it>C</it>`"<sup>-25</sup> 106-107*(c pr m) <it>n</it><sup>-628</sup> <it>x</it> 424

: <gk>mwusshs</gk> 68`

|<gk>parelqw/n]

: <gk>elqwn</gk> 126

: <gk>diabas</gk> Cyr IX 1128 (sed hab passim) GregNys VII 9

+<gk>dh</gk> 426 == <9M>9

| to( orama]</gk>

+<<gk>ti</gk> 73

:] > Bo<sup>B</sup>

| o(/rama to\ me/ga]

: <gk>mega orama</gk> Cyr IX 1129 (sed hab passim) GregNys VII 9 <sup>Lat</sup>Cyp <it>Quir</it> II 19</gk> Quodv <it>Haer</it> IV 22

|om <gk>to/</gk> 2 (0)] -- (.4) idei=n</gk> 6l8<sup>txt</sup>

| to\ mega] > <sup>Lat</sup>Cassiod <it>Ps</it> CXXVIII 8 Hil <it>Ps</it> CXXVIII 12 Ruf <it>Gen</it> XII 2 Sa<sup>txt</sup>

:post <gk>tou=tol</gk> (~)72 54 <it>n</it><sup>-628</sup> Iust <it>Dial</it> LX 4 <sup>Lat</sup>cod 101 Aug <it>Trin</it> II 23 Or <it>Matth</it> 90 Arm<sup>te</sup>(~)

| ti o(/ti]</gk>

+<<gk>pros</gk> Carl 49

: <it>propter quid</it> Bo Syh

:om <gk>ti)</gk>] > B 58-376-<it>oII</it><sup>-135</sup> <it>b</it> 129-246 <it>x</it> 68`-120` 55* Cyr <it>Ad</it> 232<sup>PV</sup> <it>Gl</it> 413<sup>FP*</sup> X 781 (sed hab <it>Ad</it> 937 <it>Gl</it> 416) Iust <it>Dial</it> LX 4 <sup>Lat</sup>codd 100 101

|ou -- fin] <it>arderet hoc arbor et non combureretur</it> Bo<sup>A<sup>txt</sup></sup>: cf .2;

| ou] > 509

| katakaietai]</gk>

: <gk>katekaieto</gk> <it>d</it><sup>-106</sup> 134-370 <it>x</it>

: <gk>katakaieto</gk> 134

| o ba/tols] h batos F<sup>b</sup> 72-135* (1 (0)) 126-131<sup>c</sup>-552<sup>mg</sup> 527 76 130 509 == Ald Compl

: <it>rubus hri</it> <sup>Lat</sup>codd 100 101

:om <gk>o(</gk>] > 55*


 
4
om <gk>w(s] > 619*

| ku/rios 1 (0)]</gk>

+<<gk>o</gk> 82 56` 130 Cyr X 781 (sed hab passim)

: <gk>Qs</gk> Carl 49 == Sam

:] > Eus VI 236 (sed hab 241 II 18) <sup>Lat</sup>cyp <it>Quir</it> II 19

ms:parabl. 2 (0) 376

|<gk>prosa/gei]

: <gk>proagei</gk>72 25-414`-615 44 53`-129 75 127 619 Tht <it>Ex</it> 101<sup>ap</sup> == Compl

: <gk>prwagei</gk> 75

: <gk>prwagh</gk> 129

: <gk>parhl</gk>[<gk>qen]</gk> Carl 49

+<it>moyses</it> Aeth<sup>M</sup> == Tar<sup>P</sup>

| i)dei==n]</gk>

:[<gk>id</gk>]<gk>wn</gk> Carl 49

:] > Bo<sup>A<sup>txt</sup></sup> Sa

|</gk> om <gk>au)to/n</gk>] > F* (c pr m) 509

| ku)rios 2 (0)]

: <gk>kn</gk> 78*

: <gk>o Qs</gk> Carl 49 Phil III 246<sup>ap</sup>^^

:] > 618 106 75 619 Cyr <it>Ad</it> 233 (sed hab passim) Eus VI 236 (sed hab 241 II 18) Tht <it>Ex</it> lOl<sup>ap</sup>

+<it>deus</it> <sup>Lat</sup>Cyp <it>Quir</it> II 19 Aeth<sup>-M</sup>

| e/k]</gk>

+ (^ 64) <gk>mesou</gk> <it>O</it><sup>-72</sup>-64<sup>mg</sup>(vid) 128` Eus VI 236 241 (sed hab II 18) Arm Syh == <9M>9

| tou=]

: <gk>ths</gk> F<sup>b</sup> 72-376 131<sup>c</sup> 106 75 527 76 Phil III 246<sup>ap</sup> HymenHier 17 Iust <it>Dial</it> LX 4 Tht <it>Ex</it> lOl<sup>ap</sup> == Ald Compl

|<gk>legwn</gk>]

+: <gk>kai eipen</gk> 129 Carl 49 == Compl <9M>9

] > Hil <it>Trin</it> IV 32

| Mwush== Mwush==]

: <gk>mwsh mwsh</gk> 72-82*-135-426 78-126 2<sup>-44</sup> <it>n</it> 799 Phil III 246<sup>ap</sup>;...]

: <gk>h mwsh</gk> Carl 49

: <gk>mwussh mwussh</gk> 68`

: <gk>mwsh</gk> 52`-761;

semel scr 313 53`

|</gk> om <gk>o</gk> -- fin] > 318

| <gk>o de eipen</gk>]

:+<gk>kai eipen Mwushs</gk> 500

| o( de/]

: <it>ad</it> <it>ille</it> <sup>Lat</sup>codd 100 101

:] > Aeth<sup>MP</sup>

| ti e)stin]

: <gk>idou egw</gk> Carl 49^^

+<gk>kurie</gk> <it>z</it> 130 Cyr <it>Gl</it> 413<sup>P</sup> (sed hab passim) <sup>Lat</sup>Quodv <it>Haer</it> IV 23 Aeth<sup>C</sup>


 
5
<gk>kai) eipen]

: <gk>o de eipe</gk>(<gk>n</gk>) B M<sup>mg</sup> 15` 56`-129 <it>z</it> 799 == Compl

+<gk>o de ks <gk>eipen</gk> 130

+<gk>eipe(n)</gk> de <it>b</it>

+<gk>eipen de pros auton</gk> 55 Sa

+<gk>eipen de autw o kurios</gk> Act 7:33

+<gk>autw</gk> 126 53` Aeth Arab

+<it>ille dns (ds 101) <sup>Lat</sup>codd 100 101 Quodv <it>Haer</it> IV 23<sup>te</sup>

+<it>ad eum dns</it> Quodv <it>Haer</it> IV 23<sup>ap</sup>

+<gk>ks</gk> 527

| mh/ e)ggishS wde]

: <gk>mh engishs [su]n arPagh,i,</gk> Carl 49

| lu=sai]

: <gk>luson</gk> 72-618 <it>b</it> 121-527 <it>z</it> 55 Carl 49 Act 7:33

: <gk>upolusai</gk> Epiph I 142 Iust <it>Apol</it> LXII 3 ^^

| to( u\po/dhma]

: <gk>ta upodhmata sou</gk> Carl 49 Epiph I 142 Iust <it>Apol</it> LXII 3 <sup>Lat</sup>Quodv <it>Haer</it> IV 23<sup>te</sup> Aeth Arm == <9M>9<sup>L</sup> Sam Tar<sup>P</sup>

(sub ^ Arm<sup>mss</sup>; > Epiph Quodv)

+ (^ Syh) <gk</sup>ou</gk> 58<sup>mg</sup>-135-376`-618 Syh == <9M>9<sup>mss</sup> Tar<sup>O</sup> ^^

| om <gk>e)k tw==n podw=n</gk>] > Caes <it>Serm</it> XCV 3 Hi <it>Ad Iovin</it> I 21 <it>IohCass <it>Inst</it> 9.2 Or <it> Reg</it> I 6 Ruf <it>Ios</it> VI 3

| e)k]

: <gk>apo</gk> 75 Carl 49

:] > 72-707-708 77 71* Act 7:33

|<gk>e)n w]

: <gk>ef w</gk> 130 Act 7:33: cf</gk> Ios 5:15

: <gk>on</gk> Cyr X 781 (sed hab passim)

|<gk</sup>u</gk>] > A 707 126 118`-537 106 53` 121 Carl 49 Act 7:33 Aeth<sup>R</sup> Bo

| e)/sthkas]

+<gk>en autw</gk> 628

+<gk>ep autw</gk> Eus V II 236

+ (^ Arm<sup>mss</sup> Syh) <gk>ep autou</gk> <it>O</it><sup>-72</sup> Carl 49 Eus II 18 VI 241 Arm Syh ^^

| gh== a\gia]

: <gk>agios</gk> 53` Phil III 145<sup>ap</sup> Tht <it>Ios</it> 276<sup>te</sup> : cf Ios 5:15 ; <gk>topos agios</gk> Tht <it>Ios</it> 276<sup>ap</sup>


  
6
init -- <gk>au/tw=|]</gk>

+<<gk>kai eipe mwushs tis ei su</gk> 53`

+<gk>eipe de autw</gk> 72

: <gk>autw=|</gk> sub  Syh

:om <gk>autw</gk>] > B 15`-707 56* 55 799 Carl 49 Cyr <it>Gl</it> 468 (sed hab 413 X 781) == <9M>9

] > 77

|</gk> om <gk>eimi</gk> 761 Marc 12:16 Act 7:32

| o -- sou]</gk>

+< ks 527 Bo<sup>B</sup>

:om <gk>o\</gk>] > 618 54* 59

] > Matth 22:32 Marc 12:26

| tou patro/s sou]

: <gk>twn prwn sou</gk> 58` 84 Carl 49 Act 7:32 Aeth<sup>CG</sup> Bo == Sam

:] > 56*

:post <gk>`Abraa/m</gk> (~)<it</sup></it>(~)

|</gk> om <gk</sup>ou</gk>] > 135*

|<queo/s</gk> 2 (0)]

+<pr <it>o</it> A 15-64*-72-376 <it>C</it>`"<sup>-54</sup> <it>b</it> 106 <it>n</it> <it>x</it> 121-527 <it>z</it> 18 76 130 424 509 799 Matth 22:32 Marc 12:26 Act 7:32

:] > 135 54 107`-125 <it>f</it> <it</sup></it> Sa

|`Abraa/m]

: <gk>abram</gk> 376*

+ ras ca 10 litt 131

| kai) 2 (0)]</gk> +<  Syh<sup>T</sup>

:sub  Syh<sup>L</sup> == M<sup>L</sup> Tar

| Qeo/s</gk> 3 (0)] A B F M 29`-58-82-426-<it>oI</it> 44 <it>t</it> 318` 55 59 319 Marc l2:26<sup>te</sup> Act 7:32<sup>ap</sup>

] > 72 422 107`-125 <it>n</it><sup>-458</sup> 619 76 799 Act7:32<sup>te</sup>

+< <it>o</it> Carl 49 Matth 22:32 Marc 12:26<sup>ap</sup> Act 7:32ap rell

| <gk>i,s,saak</gk> Carl 49

| Qeo/s 4 (0)] A B F M 29`-58-82-426-<it>oI</it> 19 44 <it>t</it> 318` 55 59 319 Marc 12:26<sup>te</sup> Act 7:32<sup>ap</sup>]

] > 72 422 107`-125 <it>n</it><sup>-458</sup> 619 799 Act 7:32<sup>te</sup>

:+< <gk>o</gk> Carl 49 Matth 22:32 Marc l2:26<sup>ap</sup> Act 7:32<sup>ap</sup> rell

| )Iakw(B]

: <gk>iak</gk> 413*

| a\pe/streyen de]

+<gk>kai apestreye</gk> Anast 129

: <gk>kai ap,[e]kruyen</gk> Carl 49

| a\pe)treyen]

: <gk>epestreyen</gk> 72 76`

: <gk>apekruye</gk> 458 ^^

| de)]

: <it>enim</it> <sup>Lat</sup>cod 100

| : <gk>mwshs</gk> 72-135-426-<it>oI</it> <it>C</it>`" <it>d</it><sup>-106</sup> <sup>n</sup> 121 424 Carl 49,

: <gk>mwusshs</gk> 68`

|</gk> om <gk>au\tou</gk>] > 376 Phil III 140

| eu/labeitol]

: <gk>hulabeito</gk> M 15`-58-64` <it>C</it>``<sup>-739</sup> <it>x</it> <it>z</it> 18 55 76 424 Anast 129 Cyr passim Tht <it>Ex</it> 101

: <gk>hblabeito</gk> 76

: <gk>efobhqh</gk> Carl 49 == <9M>9

: <it>pudefactus est</it> Syh<sup>mg</sup>

|</gk> om <gk>ga/r] > <it>d</it> 799

| katemble)yai e)nw(pion]

: <it>intendere</it>

( + in</gk> 101)

<it>faciem</it> <sup>Lat</sup>codd 100 101

| katemble)yai]

: <gk>katableyai</gk> 376-708 <it>C</it>-78-126 19` 610 53`-246 619 68`-120` 55 509 Tht <it>Ex</it> lOl<sup>te</sup>

: <gk>katebleyai</gk> 610 509

: <gk>katebleye</gk> 246

: <gk>anableyai</gk> 130

: <gk>e,[ble]ye</gk> Carl 49

| e)nw(pion --</gk> fin]

sup ras ca 16 |itt 15

:om <gk>tos</gk>] > Tht <it>Ex</it> 101<sup>ap</sup>


 
7
<gk>eipen de/]

: <it>et dixit</it> <sup>Lat</sup>cod 101

| ku/rios]</gk>

+<<gk>o</gk> 458

| pro)s Mwush==n]

: <gk>tw mwsh</gk> 458

sub  Syh<sup>L</sup> == <9M>9

| Mwush==n]</gk>

sub  Syh<sup>T</sup>

: <gk>mwshn</gk> 72-135-426 <it>C</it>`"<sup>-551</sup> 314*<it>d</it><sup>-44</sup> <it>n</it><sup>-458</sup> <it>x</it> 121 424

: <gk>mwusin</gk> 376

: <gk>mwusshn</gk> 68`

|</gk> om <gk>i)dw(n</gk>] > 458

|tou laos]

: <gk>tw law</gk> 458

:om <gk>tou</gk>] > 3l9* (c pr m)

| tou 2 (0)]

: <gk>thn</gk> 319

:] > Iren IV 7.4 (sed hab 12.4)

| th=s</gk> <gk>kraugh=s]

: <gk>ths fwnhs</gk> 72 619

: <gk>tou stenagmou</gk> Act 7:34

| au/tw==n 1 (0)]

: <gk>autou</gk> Act 7:34<sup>te</sup>

:] > 56* 799

| : <gk>hkousa</gk> Act 7:34<sup>te</sup> Tht <it>Ex</it> 102

|</gk> om <gk>a\po/ -- fin] Act 7:34 Arab

| e)rgodiwktw=n]

+ (^ Syh) <gk>autwn</gk> <sup>O</sup> Arm Syh == <9M>9

+ <it>qui affigunt eos</it> Bo<sup>A<sup>mg</sup>B</sup>

|</gk> om <gk>oi)=da -- fin] > 52-126 458

| oida]

: <gk>eidon</gk> 551

| au/tw=n 2 (0)] : <gk>tou laou mou tou en aiguptw</gk> 619: ex praec


 
8
<gk>e)celesqai]</gk>

+<<gk>tou</gk> F <it>d</it> <it>n</it> 30` <it>t</it> Chr lX 330 339 XVII 190

| au/tou/s 1 (0)]

: <gk>autois</gk> 56

| e)k 1 (0)]

: <gk>apo ths</gk> 628

| <gk>xeirwn</gk> 500* Arm == Tar<sup>P</sup>

| Ai)guptiwn]</gk>

+<<gk>twn</gk> 72-618 57-126 <it>n</it><sup>-458</sup> 619 527 128 Cyr <it>Ad</it> 237 == Ald Sixt

: <gk>aigu<sup>pt</sup></gk> 458

: <gk>ekguptiwn</gk> 30

: <gk>aiguptou</gk> 53

| kai</gk> 2 (0)] -- <gk>e)keinhs]</gk> om <gk>kai</gk>] > 55* Cyr <gk>Ad</gk> 237

:om <gk>e)cagagein au/tou/s</gk>] > 77

post <gk>pollh/n</gk> (~)Aeth(~)

| e)cagagein]

: <gk>ecagein</gk> 78

| au)tou/s</gk> 2 (0)]

+<gk>ek xeiros aiguptiwn kai</gk> 14-131-739: ex praec

| <gk>th=s gh=s e)keinhs</gk>]

: <gk>ths</gk> (</gk> 500) <gk>ghs aiguptou</gk> 500 Sa

| kai ei)sagagein au/tou/s]

: <gk>kai sunagagein autous</gk> 107`-125

:om <gk>kai)</gk>] > 55*

:] > A F M <it>O</it>`<sup>-58</sup>-29`-135 <it>C</it>`"<sup>-57</sup> 56<sup>txt</sup> <it</sup></it> 121` 18 59 130 509 799 Cyr 2Ad</it> 237 Arab Bo Syh<sup>L<sup>txt</sup></sup>

| gh=n</gk> 1 (0) <gk>]

+<gk>thn ghn thn</gk> 458

|</gk> om <gk>kai) pollh/n</gk>] > 15 59

| ei)s 2 (0)]</gk>

+<<gk>kai</gk> 414

:] > Bo

| <gk>meli kai gala</gk> (~)72-708 16-126-550` 107`-125 <it>x</it> 799(~)

| to\n to/pon]

: <it>terram</it> Arm == Tar<sup>P</sup>

 om <gk>to/n] > 29

| tw=n]

: <gk>ton</gk> 58

:] > 610

| : <gk>xanaiwn</gk> 59

|</gk> om <gk>kai 6 (0)] 106-125 == <9M>9<sup>mss</sup> Sam

|<gk>xettaiwn]</gk>

+<<gk>twn</gk> 72 == <9M>9

+<gk>twn xetgaiwn</gk> 58

: <gk>xetgaiwn</gk> 15-29-64 118` 75 85` 84 128

: <it>chetthaeorum</it> <sup>Lat</sup>cod 101

|</gk> om <gk>kai)7 (0) 8 (0) 9 (0) 10 (0) 106-125

| kai)7 (0)] 9 (0)] </gk> 53

|<gk>`Amorrai)wn -- Eu/ai)wn]

: <gk>euaiwn kai ferecaiwn</gk> (<gk>ferecewn</gk> 246*) kai amorraiwn</gk> 56`-664 130

| <gk>`Amorrai)wn</gk> F F<sup>b</sup>] : <gk>ammorraiwn</gk> 708 44 730 84 55

: <gk>amwrraiwn</gk> 458 30

: <gk>ammoraiwn</gk> 118` 610 799

: <gk>amoraiwn</gk> <it>x</it>

: <gk>amwraiwn</gk> 527

: <gk>aporraiwn</gk> F<sup</sup></sup>

| <gk>ferecai)wn]

: <gk>fercaiwn</gk> 54

:et

<gk>Eu/ai)wn</gk> (~)392(~)

| kai) 9 (0)] ms:parabl. 10 (0) <it>n</it><sup>-628</sup> 68 799

| Eu(aiwn]

: <gk>ebaiwn</gk> 44`-610 59

: <gk>eucheorum</gk> <sup>Lat</sup>cod 100

:et <gk>Gergesaiwn</gk> (~)B 72 Aeth<sup>C</sup> == Ra Sam(~)

| kai) Gergesaiwn</gk> sub  Syh

:] > 500 == <9M>9 Tar

| kai)</gk> 10 (0)] ms:parabl (9) 1 (0) 53(||)

| Gergesaiwn]

: <gk>gergessaiwn</gk> 58-708(|)

: <gk>gersaiwn</gk> 135-707

: <gk>gersewn</gk> 246

: <it>gergesseorum</it> <sup>Lat</sup>cod 100

:et <gk>)Iebousai)wn</gk> (~)19` (sed hab Compl)(~)

| kai</gk> 11 (0)] ms:parabl. (9) 6l8<sup>txt</sup>

| )Iebousaiwn]

: <gk>ebousaiwn</gk> 458 59*

: <gk>ieboussaiwn</gk> 56 46

: <gk>ieuousaiwn</gk> 619

: <it>zebusaeorum</it> <sup>Lat</sup>cod 1 00


 
9
<gk</gk>kraugh/]</gk>

+<<gk>h</gk> F<sup>b</sup> 52-126 <it>f</it><sup>-56*</sup> 75 Cyr <it>Ad</it> 240<sup>P</sup> == Compl

|</gk> om <gk>tw=n] > 59

|</gk> om <gk>)Israh/l</gk>] > 68 (sed hab Ald)

|</gk> om <gk>me</gk>] > F* (c pr m)

| kai) e)gw(] : <gk>kagw</gk> B 15`-58` <it>f</it> <it>z</it> 130799 Cyr <it>Ad</it> 240 == Compl Ra

: <gk>idou egw</gk> 321

| e)gw(/]</gk>

+<<gk>idou</gk> 318

:] > 527 == <9M>9

+<gk>idou</gk> 64<sup>mg</sup>

|<gk>ewra thn qlhyin hn</gk> 126 ^^

| qlimmo/n]

: <gk>qimon</gk> 376

: <gk>qlibonta</gk> 799

+<gk>autwn</gk> 15 246 Aeth(vid) Arab Co ^^ contra <9M>9

| oi) Ai)gu/ptioi]</gk>

om <gk>oi)</gk>] > 14-739 44 53

:] > Arab

| qlibousin]

: <gk>qliboun</gk> l26(vid) 125

: <gk>ekqlibousin</gk> <it>b</it> (sed hab Compl)

: <it>deprimebant</it> <sup>Lat</sup>cod 100

| fin] + <gk>kai ecapolsteilon autous</gk> <it>x</it>


 
10
<gk>a\postei)lw]</gk>

+<<gk>kai</gk> 44 <sup>Lat</sup>cod 100 Caes <it>Serm</it> XCV 4 == <9M>9

: <gk>apostelw</gk> 72 25* 106 Act 7:34<sup>ap</sup> Bas II 429 432 (sed hab 436) Cyr <it>Ad</it> 240 (sed hab IX 77) Sa ==<9M>9

: <gk</sup>teilw</gk> 422

: <gk>ecaposteilw</gk> 761

: <it>mitto</it> <sup>Lat</sup>cod 101

| pro/s -- Ai)gu/ptou 1 (0)]

: <gk>eis aigupton</gk> Act 7:34

| pro/s]

: <gk>eis</gk> C`"<sup>-126</sup>

| basile)a Ai)gu/ptou]</gk>

+<<gk>kai</gk> 54 :sub  Syh == <9M>9

| : <gk>basileus</gk> 75

| Ai)gu/ptou</gk> 1 (0)]

: <gk>aigu</gk> 54*(|) ms:parabl 2 (0) 799 ms:parabl (11) 1 (0) 54-414`

| e)ca/ceis</gk> == Sam Tar<sup>P</sup>

: <gk>ecachs</gk> 313 56`* 458 127*

: <gk>ecagage</gk> Iust <it>Apol</it> LXIII 8 == <9M>9 Tar<sup>O</sup>

: <gk>ecagageis</gk> 72

: <gk>ecareis</gk> 19` (sed hab Compl)

:litt <gk>ec</gk> sup ras 3--4 litt 708

|</gk> om <gk>to\n Iao/n mou</gk>] > Cyr IX 77 (sed hab <it>Ad</it> 240)

| tou\s ui)ou/s]

: <gk>ton</gk> 53` 76`

|</gk> om <gk>e)k</gk>] > 376

| gh=s</gk> == Tar<sup>O</sup>]

: <gk>ths</gk> 707 56* == <9M>9 Sam Tar<sup>P</sup>

|</gk> fin]

+<gk>eipe de o Qs mwsei legwn oti esomai meta sou</gk> 550`*: ex .12


 
11
om init -- <gk>(12) le/gwn</gk> 106

|</gk> om comma 125: homoiot

|</gk> om init -- <gk>Ai)gu/ptou</gk> 1 (0)] 392: homoiot

| kai) eipen]

: <gk>eipe(n)</gk> <gk>de</gk> 761 <it>b</it> <gk>n</gk> 527 55 <sup>Lat</sup>cod 100 Sa<sup>3</sup> (sed hab Compl)

:om <gk>kai</gk>] > <sup>Lat</sup>cod 101

| : <gk>mwshs</gk> <it>O</it>`<sup>-376 618</sup> 135 <it>C</it>` 25-313`-422-615 44-107` <it>n</it> 127*

: <gk>mwusshs</gk> 68`

| ton qeo/n]

: <gk>kn</gk> 55 <sup>Lat</sup>cod 100 Aug <it>Loc in hept</it> 11 9<sup>ap</sup> == Tar

:om <gk>to/n</gk>] > 527*

| tis] : <gk>ti</gk> 458

| ei)mi]</gk>

+< (^ Syh) <gk>egw</gk> 58-376 128` Syh ^^

: <gk>ego</gk> <sup>Lat</sup>Aug <it>Loc in hept</it> 11 9 Aeth Bo

+ (^ Arm<sup>ms</sup>) <gk>egw</gk> A<sup>c</sup> B F<sup>b</sup> 15`-72-135*-426-<it>oI</it> 126-550` <it>b</it> <it>n</it><sup>-628</sup> 527 55 130 509 ClemR XVII 5 Cyr <it>Ad</it> 240 Tht <it>Ex</it> 112 II 500 <sup>Lat</sup>cod 100 Arm Sa == Ald

| o(/ti</gk> 1 (0)]

: <gk>tou</gk> 126

| poreu/somai]

: <gk>poreuomai</gk> 121 == Compl

: <gk>me pempeis</gk> ClemR XVII 5

| faraw(]</gk>

+<<gk>ton</gk> Tht <it>Ex</it> 112<sup>ap</sup>

: <gk>farw</gk> 761

:] > 77

:et <gk>basile)a</gk> (~)458(~)

| basile)a Ai)gu/ptou]</gk>

sub  Syh

:] > Bas II 437 (sed hab 429) == <9M>9

| Ai)gu/ptou 1 (0)] ms:parabl. 2 (0) <it>C</it>-78-761 44 458

|</gk> om <gk>kai</gk> 2 (0)] 59 <sup>Lat</sup>codd 100 101

|om <gk>o(/ti 2 (0)] 29 126 Bas II 429 (sed hab 437) Cyr <it>Ad</it> 240<sup>R</sup> <sup>Lat</sup>Aug <it>Loc in hept</it> II 9 Arm

| : <gk>ecaceis</gk> 107*

| tou/s --</gk> fin] <it>e terra aegypti populum</it> Sa<sup>3</sup>

| tous ui)ou\s Israhl]

: <gk>ton Iaon</gk> Bas 11 429 437

| e)k --</gk> fin] sup ras 56

| e)k gh==s]

: <gk>ec</gk> 426 75 == <9M>9

<gk>ek ths</gk> 707 59

+<gk>ec</gk> M 18


 
12
om init -- <gk>Ai)gu/ptou</gk> <it>x</it> homoiot

| init -- <gk>le/gwn]

+<it>tunc dixit illi dns</it> <sup>Lat</sup>cod 100

|</gk> om init -- <gk>Qeo/s</gk> l2l<sup>txt</sup>

| eipen de/]

+<gk>kai eipe</gk>(<gk>n</gk>)</gk> 392-527

: <gk>apekriqh de</gk> <it>b</it> (sed hab Compl)

+<gk>autw</gk> 126 121(<sup>mg</sup>) <sup>Lat</sup>cod 101 Aeth

| o( -- le/gwn]</gk>

+<<gk>kurios</gk> 246

] > A F M<sup>txt</sup> 29-64<sup>txt</sup>-135-708 318 59 76` 509 Arm Syh<sup>txt</sup> == <9M>9

| o( Qeos Mwush=|]

: <gk>o Qs pros mwushn</gk> 129

(litt <gk>o Qs pr</gk> sup ras)

:] > Bo<sup>A</sup>

| o\ Qeo/s]

: <gk>kurios</gk> 707 <it>b</it> <it</sup></it> 392-527 130 <sup>Lat</sup>Arnob <it>Confl</it> I 16 Aeth (sed hab Compl)

] > 53* (c pr m)

|</gk> om <gk>Mwush=| le)gwn</gk> 121 <sup>Lat</sup>cod 101 Aeth

| : <gk>Mwush=|</gk> M<sup>mg*</sup>) 15`-376 53<sup>c pr m</sup>-56-664 == Sixt]

+<<gk>pros</gk> 58 246 527*

+<<gk>tw</gk> 128` 799

+<gk>to</gk> 68` 72 120` 130

+<gk>pros</gk> <it>b</it> 44-125 <it</sup></it> <it>t</it><sup>-46<sup</sup></sup></sup> 392-527<sup>c</sup> 55 <sup>Lat</sup>Arnob <it>Confl</it> I 16 Syh<sup>mg</sup> 426 107` 2<sup>-628</sup> 46<sup</sup></sup> 18

: <gk>mwussei</gk> 68`

: <gk>mwsei</gk> 72

: <gk>mwusei</gk> 120` 130

: <gk>mwsei</gk> 57-77-78-414`-550`-615<sup>c</sup>-739-761

: <gk>mwsh</gk> 64(<sup>mg</sup>)-618 14`-25-52-54-73-131-313-413-422-500-615*

: <gk>mwsh mwsh</gk> 126

: <gk>mwushs</gk> 53*

: <gk>mwushn</gk> <it>b</it> 44-125 <it</sup></it> <it>t</it><sup>-46<sup</sup></sup></sup> 392-527<sup>c</sup> 55 <sup>Lat</sup>Arnob <it>Confl</it> I 16 Syh<sup>mg</sup>

: <gk>mwusin</gk> 30

: <gk>mwshn</gk> 426 107` 2<sup>-628</sup> 46<sup</sup></sup>

: <gk>mwsh</gk> 18

: <gk>autw</gk> 707 628

: <gk>mwusei</gk> rell == Ra

| om <gk>legwn</gk>] > 72-707 Bo

| <gk>o(/ti</gk> 1 (0)]

: <gk>kai</gk> 106

: <gk>egw</gk> 318 Arm

:] > Arab

+<gk>ego</gk> <sup>Lat</sup>cod 101

| esomai]

: <gk>ego</gk> (] > R) <gk</sup>um</gk> Aeth

| tou=to/]

+<it>erit</it> Arm Sa<sup>3</sup> == Tar<sup>P</sup>

| soi] > 72 <it>d</it><sup>-106</sup>

post <gk</sup>hmeion</gk> (~)<sup>Lat</sup>cod 100 Aeth Arab Bo(~)

| o(/ti 20]

: <gk>ote</gk> F<sup>b</sup>

| om <gk>e)gw</gk>] > <sup>Lat</sup>cod 101

| se a/poste/llw]</gk>

: <gk>ecapostelw se</gk> 426 799

: <gk>ecapostellw se</gk> 56*

:(~)Co Syh == <9M>9(~)

| a)/poste/llw]

: <gk>apostelw</gk> <it>d</it> 30-344* 121 59* Sa

: <gk>ecapostelw</gk> B 15` 413 <it>n</it><sup>-458</sup>

: <gk>ecapostellw</gk> <it>O</it>`<sup>-426</sup> <it>C</it>`"-126 413 53`-56<sup>c</sup> 458 392 <it>z</it> 76` 130 == Ra

: <it>misi</it> Arm

| e)n 1 (0)] -- se 2 (0)]

: <gk>tou ecagagein</gk> 53` <sup>Lat</sup>cod 100 Arm

| e)cagagein se]

: <gk>ecagagein me</gk> 72

: <gk>ecagein se</gk> 74

: <gk</sup>e ecagein</gk> 78

:om se] > 376 l27 59 Aeth<sup>P</sup> (~)A F M <it>oI</it>-29`-135 <it>C</it>`"<sup>-78</sup> 129 <it</sup></it><sup>-127</sup> <it>y</it> 18 55 76` 509(~)

|<gk>to)n Iao/n / mou]</gk>

om <gk>mou</gk>] > A<sup>txt</sup> M 135-707 l2l<sup>c pr m</sup> 18 76` Syh == <9M>9 (~)53`(~)

+<it>filios israel</it> Sa<sup>4</sup>

| e)c Ai)gu/ptou]

: <gk>ek ghs aiguptou</gk> 53` 527 76` <sup>Lat</sup>cod 100 Aeth Bo<sup>B</sup> Sa<sup>3</sup>

: <gk>ton en aiguptw</gk> 77

| latreu/sete]

: <gk>latreusate</gk> 131 -414` 76`

: <gk>latreusatai</gk> 319

: <gk>latreushte</gk> 628;

: <gk>latreusai</gk> 72-135 53` <it>n</it><sup>-628</sup>

: <gk>latreuse</gk> 75

: <gk>latreusousi</gk> <it>x</it>

:(latreuswsi</gk> 619

| tw==i Qew==i] <it>mihi</it> Arnob <gk>Confl</gk> I 16

| toutw|] > Sa<sup>3</sup>

+<gk>enxwrhb</gk> 64<sup>mg</sup>


 
13
<gk>kai) ei)=pen]</gk> bis scr 54*(||)

| : <gk>mwshs</gk> 72-135-426-<it>oI</it> 52`-1 26-552*-739-761 <it>n</it><sup>-628</sup> 46 799

: <gk>mwusshs</gk> 68`

| to)n Qeo/n]

: <it>dnm</it> <sup>Lat</sup>codd 100 101 == Tar

| e)leu/somai]</gk>

: <gk>eceleusomai</gk> B

: <gk>poreuomai</gk> Cyr X 681

|</gk> om <gk>pro/s 3 (0)] > 500* 85 619

| au/tou/s 1 (0)] ms:parabl. 2 (0)] 799

|  o(]

+<<gk>ks</gk> 58-64<sup>mg</sup> <it>f</it><sup>-129</sup> <it>n</it><sup>-628</sup> 30` 85`<sup>mg</sup> 130 <sup>Lat</sup>codd 100 101

|</gk> om <gk>tw=n pate)rwn u/mw=n</gk>] > 53

| pate/rwn]

+<gk>mou kai prwn</gk> 628

| u(mw=n]

: <gk>hmwn</gk> B 82*(c pr m)-376-707 <it>C</it>`"<sup>-16<sup>c</sup> 54*-422<sup>c</sup> 500</sup> <it>b</it> <it>d</it> 56` <it>n</it><sup>-628</sup> 30-127<sup>c</sup>-344<sup>c</sup> 318 <it>z</it><sup>-128</sup> 59 76 Bo<sup>B</sup> (sed hab Compl);

: <gk>mou</gk> 54*] > 527

| : <gk>ecapestalken</gk> 509

|</gk> om <gk>me</gk> 1 (0)] > 343

| uma=s] : <gk>hmas</gk> 707 422* 19<sup>c</sup> 107`-125 75

+<gk>o Qs twn prwn  hmwn</gk> 53`

|<gk>erwthsousin</gk>

+<<gk>kai ean</gk> <it>b</it>

+<<gk>kai</gk> <it>O</it>-82 <it>C</it>`" 53-56<sup>c</sup>-129-246 527 128` Aeth Arm Syh == Ald <9M>9

+<<gk>kai ei</gk> 664

+<<gk>ean</gk> <it>x</it> Ath II 213 Cyr VIII 261 (sed hab X 681)

+<gk>ei erwthsousin de</gk> 64<sup>c</sup>

: <gk>erwthswsi</gk>(<gk>n</gk>)</gk> (c var) F <it>b</it> 44 <it>n</it><sup>-628</sup> <it>x</it> 130 Ath II 213 Cyr VIII 261 (sed hab X 681)

| me 2 (0)]

: <gk>moi</gk> 16

| ti</gk> 1 (0)]

: <gk>to</gk> 414* 75 Aeth

| o)/noma]</gk>

+<<gk>to</gk> 15`-58` 19` <it>d</it> 53`-129 458 321 <it>x</it> 76` 509

post <gk>au)tw=i</gk> (~)Epiph III 172(~)

| au)tw=i]

: <gk>autou</gk> 15'-58' -376* 106 53` <it>n</it><sup>-628</sup> Aeth Arm Co == <9M>9

+<it>est eius</it> <sup>Lat</sup>cod 101 <gk>

|</gk> om <gk>ti 2 (0) --</gk> fin] > <sup>Lat</sup>cod 100


   
14
om comma 6l8<sup>txt</sup>: homoiot

| kai)eipen 1 (0)] eipe(n) <gk>de</gk> 64<sup>mg</sup> 16 <it>b</it> <it>n</it> 392-527 (sed hab Compl)

:om <gk>kai</gk> <it>C`"</it><sup>-16 73 126 413 414</sup>

| o( Qeo/s]</gk>

+<<gk>ks</gk> <it>C`"</it>

: <gk>ks</gk> 130 Eus VI 236 <sup>Lat</sup>cod 101 Ambr <it>Ep</it> VIII 8 Arm == Tar

: <gk>o kurios</gk> Compl: bis scr 73(|);

+<gk</sup>ou</gk> 75*(vid)

| pro\s Mwush==n] : <it>ei</it> Aeth

+<gk>legwn</gk> B

| Mwush==n]

: <gk>mwusshn</gk> 68` (sed hab Ald)

: <gk>mwusin</gk> 30

: <gk>mwshn</gk> 135-426-618<sup>(mg)</sup> 126 44-107 <it>n</it><sup>-458</sup>

: <gk>mwsh</gk> 458

: <gk>auton</gk> Eus VI 236

| om <gk>e)gw/ -- ei)=pen, 2 (0)] > 72-618<sup>(mg)</sup> 318

| ei)mi]

+<it>deus</it> Arm

| om <gk>kai) eipen</gk> 2 (0)] > <it>C`"</it> Eus VIII 1:385 2:24 Tht <it>Ex</it> 102 Sa

| ou(/tws]

: <gk>tade</gk> Cyr X 681 (sed hab <it>Ad</it> 252) Tht <it>Ex</it> 102

| : <gk>ereite</gk> 82

| tois ui)ois]

: <it>ad filios</it> <sup>Lat</sup>cod 101 == <9M>9<sup>mss</sup> Sam

|<gk>)Israh/l]

+<gk>ks o Qs twn paterwn umwn</gk> 707*: ex 15 ms:parabl. (15) 314 53` 30`-343 74

| me apesteile</gk> Bas I 677

| om <gk>me</gk> M 18


 
15
> init -- <gk>u(ma=s</gk> 628 46: homoiot

| > init --  <gk>)Israh/l</gk> 125

| kai) eipen]</gk>

<gk>eipe</gk>(<gk>n</gk>) +<gk>de</gk> <it>b</it><sup>(-314)</sup> <it>n</it><sup>(-628)</sup> 392 <sup>Lat</sup>cod 100

: <<gk>kai) 799

| eipen o( Qeo\s]</gk> post <gk>palin</gk> (~)Aeth(~)

|</gk> om <gk>o 1 (0)] -- Mwush=n</gk> 106

| o\ Qeo/s / pa/lin</gk> A B 15` <it>b</it><sup>(-314)</sup> 129 458 <it>x</it> 392 <it>z</it> 130 509 <sup>Lat</sup>cod 101 Bo

 om o Qeo/s</gk>] > 527

:om <gk>palin] > 75 <sup>Lat</sup>Spec 134

:tr rell == <9M>9

| o Qeo/s</gk> 1 (0)]

+< <gk>ks</gk> <it>C`"</it>, <it>dns</it> <sup>Lat</sup>cod 100 Spec 134 == Tar

|</gk> om <gk>pros mwushn 72

: <gk>mwshn</gk> 135-426-<it>oI</it> 78-126 <it>n</it><sup>(-628)</sup>

: <gk>mwusshn</gk> 68`

] > outws - Israhl] > 121<sup>txt</sup>

|<gk>ou(/tws]

: <gk>mwushs</gk> lO6*(c pr m)

| tois uiois Isrh/l]

: <gk>pros autous</gk> 106

|om <gk>o</gk> 2 (0)] > 76(|)

|<gk>Qeo/s 2 (0)] ms:parabl. 3 (0) 53`

| u(mw=n]

: <gk>hmwn</gk> 58-82 52-73`-77-126-414`-550`-761* 19 <it>d</it><sup>-44<sup>c</sup></sup> 246 75 127-344<sup>c</sup> 68`-120` 59 76` 799 == Sixt

] > 458

: ms:parabl. (16) 54-414` 55

| Qeo/s 3 (0)]--Iakwb]</gk>

+<<gk>o</gk> 15`-58-64<sup>txt<sup>c</sup> et mg</sup>-135-376-707 <it>C`"</it><sup>(-54 414`)</sup> <it>b</it> 56`-129 75` 85` <it>x</it> <it>y</it><sup>-318</sup> <it>z</it> 18 59 130 509 799

|om <gk>Qeo/s 3 (0)] > 107`-125

] > Aeth

| kai) Qeos</gk> 1 (0)] > <gk>kai</gk> 19` 527 799 Phil IV l2<sup>ap</sup> (sed hab Compl) == <9M>9 Tar

: > <it>d</it><sup>-106</sup>

| Qeos 4 (0)]</gk>

+<<gk>o</gk> 15`-64<sup>mg</sup>-135-376-707 <it>C`"</it><sup>(-54 414`)</sup> <it>b</it> <it>i</it> <it>n</it><sup>-628</sup> 85 71 <it>y</it><sup>-318</sup> <it>z</it> 59 130 509 799

] > 619

|] om <gk>kai</gk> 3 (0)] > 19 799 Phil IV l2<sup>ap</sup>

| Qeo/s</gk> 5 (0)]

+<<gk>o</gk> 15`-64<sup>mg</sup>-135-376-707 <it>C`"</it>(-<sup>(-54 414)</sup> <it>b</it> <it>f</it>

<it>n</it><sup>-628</sup> 85 71 <it>y</it><sup>-318</sup> <it>z</it> 18 59 130 509 799

] > <it>d</it><sup>-106</sup> 619 <sup>Lat</sup>cod 100

|om <gk>a\pe)stalke)n -- umas</gk>] > Arab Bo<sup>B</sup>

: <gk>apesteile</gk> <it>b</it><sup>-19</sup> (sed hab Compl)

|<gk>touto</gk> +<<it>et</it> <sup>Lat</sup>cod 100

<gk>touton</gk> 30

| mou/]

: <gk> moi</gk>

(: <gk>mh</gk> 458)

<it>C</it>-422 53` <it>n</it> 30 Bas I 684 II 240 Or IV 69 X 700 (sed hab 701) Tht <it>Ex</it> 102 III 764 <sup>Lat</sup>cod 100 Aug passim Or <it>I Reg</it> I 11 Spec 134

:] > 72 Phil III 158<sup>ap</sup>

:post <gk>onoma</gk> (~)426 Arm == <9M>9(~)

| e)stin</gk> sub  Syh

:] > Bas I 684 Tht <it>Ex</it> 102 III 764 == <9M>9

post <gk>onoma</gk> (~)Phil IV 12 <sup>Lat</sup>codd 100 101 Aug passim Or <it>Matth</it> XVII 36 Spec 134(~)

| onoma -- mnhmosunon]</gk>

+<<gk>to</gk> 82 Cyr <it>Ad</it> 252<sup>PV</sup> X 681 (sed hab VIII 953 964) Or IV 69 (sed hab I 42 X 701 (1 (0)) == Compl

: <gk>mnhmosunon aiwnion</gk> Or IV 701(2 (0))

| aiwnion]</gk> post <gk>mnhmosunon</gk> (~)Cyr VIII 953 964 <gk>X</gk> 681(~)

| genew=n geneais]

<it>in generatione et in saecula saeculorum</it> <sup>Lat</sup>cod 100

:(~)72-376 413-761 <it>b</it> 44 53` 628 318-527 Cyr VIII 953 (sed hab 964 X 681) Or I 42 Tht III 764 <sup>Lat</sup>cod 101 (sed hab Compl) == <9M>9 Tar<sup>P</sup>(~)

:om <gk>genew==n</gk>] > A

|<gk>geneais]

: <gk>geneas</gk> 126 <sup>n</sup><sup>-458</sup>

: <gk>geneseis</gk> 799

:] > Tht <it>Ex</it> 1O2<sup>ap</sup>


 
16
<gk>e)lqw(] n -- ui)w==n]</gk> sup ras A <gk>

| eiselqwn sunagagwn</gk> HymenHier 17 <gk>

| e)luw(n</gk>

<gk>oun] kai elqwn</gk> 126 <gk>

| apelqwn x

| ou)==n fanid Fb]</gk> sub * 64<sup>mg</sup>

<>:de <it>b</it> 458 Aeth Syh 

(sed hab Compl)

<>: <gk>></gk> A <gk>F M o/-64<sup>mg</sup>-29`-</gk>135 <gk>C``-(54) 1 ( ) s-</gk> 121 18 130 509

1 ust <gk>al LlX</gk> 2 Bo <gk>

| suna/gage] sunage</gk> 392

: <gk>agage 59

:-gagete</gk> 313`-61

 5 1 25

Latcodd 91 94--96 <gk>

| th(n gerousian]</gk> pr <gk>omnem</gk> Arab

: <gk>omnes maiores natu>

1 <sup>Lat</sup>cod

100

: <gk>omnes seniores</gk> <sup>Lat</sup>cod 101 <gk>

| tw==n ui)w==n</gk> == Sam] sub%- Syh

:om <gk>tw==n

</gk> b-<gk</gk>9</gk> (sed

hab Compl)

: <gk>> d t</gk> Iust <gk>Dial LIX</gk> 2 Aethc == <9M>9 Tar <gk>

| e)reis] eipe</gk> 5

3 <gk>

|</gk> om <gk>pro/s</gk>

343 <gk>

|</gk> om <gk>ku/rios</gk> AethM SyhT <gk>

| o( -- u/mw==n]</gk> post <gk>moi</gk> tr Ath 11 7

85 <gk>

| u/mw==n] hmwn</gk>

72-82 <gk>C-500--</gk>52-78-126-761 19 107`-125 53`-246 n-<gk>628</gk> 127-344c 68`-120 59

 76 509

<gk>799</gk> Ath 11 785 HymenHier 17 == Sixt

: <gk>mou</gk> 44

: <gk>></gk> 392 <gk>

| wfqh</gk> 53` 318

 Ath 11

785 Iust <gk>Dial LIX</gk> 2 <gk>

| Qeo/s 20 --)Iakw(b]</gk> pr <gk>o</gk> 707 <gk>C`` bf-129 n</gk>

30 <gk>x</gk> 121-527 <gk>z</gk>

130 <gk>799</gk> Carl 49 Ath 11 785 HymenHier 17 Iust <gk>Dial LIX</gk> 2

: <gk>></gk> 72 106(

|)

 <gk>

| kai)</gk>

<gk>Qeo/s 10]</gk> om <gk>kai)527 799

:></gk> 125 == <9M>9 Tar <gk>

| Qeo/s 30]</gk> pr <gk>o</gk> 707

 <gk>C -  bf-129</gk> n

30` 71 121-527 <gk>z</gk> 130 <gk>799</gk> HymenHier 17 Iust <gk>Dial LIX</gk> 2 (sed hab Compl

)

: <gk>></gk>

126 619 Ath <gk</gk>1</gk> 785 == Sam <gk>

| I)saa/k] isaaak</gk> 57

: <gk>et)Iaka~</gk> tr 54*

: <gk>+>

1 spat ca 10

litt4l3 <gk>

|</gk> om <gk>kai 30 799

| Qeo/s4O]</gk> pr <gk>o</gk> 707 <gk>C``-126 bf-129</gk> n 30,

 71 121-527 <gk>z</gk> 130

<gk>799</gk> HymenHier 17 Iust <gk>Dial LIX</gk> 2 (sed hab Compl)

<>: <gk>></gk> 126 125 619 Ath 11

785 == <9M>9 <gk>

| e)pe/skemmai] episkeyomai</gk> 761 <it>b</it> 628 <sup>Lat</sup>cod 1 01 Armte (sed hab

Compl)

: <gk>episkeptomai</gk> Iust <gk>Dial LlX</gk> 2

: <gk>episkeyetai</gk> 53` <gk>799</gk> == Tarp

: <gk>epeskeyen</gk>

59 <gk>

| u/ma==s] ^(17) C

|</gk> om <gk>kai) 40 59</gk> Aeth <gk>

|</gk> om <gk>o(/sa -- (17) ei)==p

a</gk> 628 <gk>

| o(/sa] vidi</gk>

<gk>omnia quae</gk> Bo

: <gk>+ soli 319*

| u/min]</gk> pr <gk>en</gk> 54 <gk>

| Ai)gu/ptwi]</gk> pr <gk>

th 59;</gk> pr <gk>gh</gk> 15` 53 -

56c-129 Aeth Arab Sa

: <gk>+ ewraka 19,</gk>


3.
17
<gk>kai ei)==pa]</gk> om <gk>kai)</gk> BoB

: <gk>></gk> 53` <gk>59*

| ei)==pa</gk> A <it>b</it> 392] <gk>eipe

n</gk> <it>b</it> 15`-

5 - 18-707-708 126-422 107`-125 56`-129 318 <gk>z</gk> 55 509 <gk>799

:dico</gk> Arm

:eip

458;

<gk>eipon</gk> (-<gk>pwn</gk> 75) rell == Ra <gk>

| a\nabiba/sw] anabibw</gk> (-<gk>bhbw</gk> 458) <gk>n

:-bibasai</gk> (-bhb.

<gk>58*-</gk>72-135 30) <gk>0-426-29-</gk>135* <gk</sup></gk> 55

: <gk>anacw</gk> Carl 49 <gk>

| e)k ths kak

w(sews] e carcere</gk>

Bo <gk>

| th==s kakw(sews]</gk> pr <gk>ths ghs</gk> 75 Arm

: <gk>(tou] skulm[ou]</gk> Carl 49

: <gk>+

 umwn</gk> 75 <gk>

|</gk>

<gk>ei)s 10 ]</gk> pr <gk>kai eisacw umas</gk> <it>b</it> (sed hab Compl)

:pr <gk>etfaciam ascendere

nos</gk> Aeth <gk>

|</gk>

om <gk>th/n</gk> 628 <gk>

| tw==n xananaiwn] tolu xana[...</gk> Carl 49 == <9M>9 Sam

: <gk>twn x

ananwn</gk>

458*

:om <gk>tw==n</gk> 125 == Compl <gk>

|</gk> om <gk>kai) 20</gk> 44`-125 <gk>799</gk> == Sam <gk>

| xet

tai)wn]</gk> pr

<gk>twn</gk> 25

: <gk>xetgaiwn</gk> 1 5-<gk</it>9*-58-</gk>64 85` 84 128

: <gk>eqqaio[ u]</gk> Carl 49

: <

1chetthaeorum</gk>

Latcod 1 01 <gk>

| kai) 30 -- )Iebousai)wn] kai amorr. kai fereZ kai iebous. kai ge

rgesewn</gk>

<gk>kai ebaiwn</gk> 75 <gk>

| kai) 30 -- Gergesai)wn] kai amorr. kai gerges;</gk> (-<gk>gesew

n</gk> 537) <gk>kai fe-</gk>

<gk>reZ kai euaiwn</gk> <it>b</it> <sup>Lat</sup>cod 101 <gk>

| kai) Eu/ai)wn]</gk> om <gk>kai)44`-</gk>125 <gk>799;</gk>

 post <gk>fereZai)wn</gk> tr

58`-707 628 30` <sup>Lat</sup>cod 100 == <9M>9 Tar

:post <gk>Gergesai)wn</gk> tr A <it>b</it> 15`-426 129

<gk>x z</gk>

Carl 49 Arm Syh == Compl Ra Sam

: <gk>post)Iebousaiwn</gk> tr 376

: <gk>></gk> Sa <gk>

| Eu\ai)w

n]</gk>

<gk>euaiou</gk> Carl 49 == <9M>9 Sam

: <gk>eucheorum</gk> <sup>Lat</sup>cod 1 00

: <gk>ebaiwn</gk> 125 664 71

 59 <gk>

|</gk> om

<gk>kai) 40</gk> 50 60 44`-1 25 <gk>799

| `Amorrai)wn] ammorr;</gk> 761 84

: <gk>ammoraiwn</gk>

126-422 44

55 <gk>799

:amoraiwn</gk> 71

: <gk>amwraiwn</gk> 527

:-<gk>rreou</gk> Carl 49 == <9M>9 Sam

:et <gk>

fereZai)wn</gk> tr

<gk>f-129</gk> 392 130 <gk>799

| fereZaiwn] feresaiwn</gk> 414-551 *(vid) Bo

: <gk>feressaiwn

</gk> 708,;

-<gk>Zaiou</gk> Carl 49 == <9M>9 Sam

:et <gk>Gergesai)wn</gk> tr <gk</sup>-30

| kai) Gergesaiwn]>

1 sub%- Syh ====

<9M>9 Tar

:post <gk>)Iebousaiwn</gk> tr <sup>Lat</sup>cod 1 00 <gk>

| Gergesai)wn] gerssaiwn</gk> 246;

 <gk>gers.</gk> 53

458 == Ald

: <gk>gergess. 58</gk> <sup>Lat</sup>cod 1 00

: <gk>gersesaiwn</gk> 527

:-<gk</sup>aiou</gk> Carl 49 ==

 Sam <gk>

|</gk>

om <gk>kai)</gk> 70 -- <gk>(18) h(ma==s</gk> Arabtxt <gk>

|</gk> om <gk>kai) 70</gk> 44 <gk>

| )Iebousai)

wn] iebouss.</gk> 761 56 46;

<gk>ieuousaiwn</gk> 376

: <gk>ieubousaiwn</gk> 458

: <gk>zebusaeorum</gk> <sup>Lat</sup>cod 1 00

:-<gk</sup>eou</gk>

Carl 49 == <9M>9 <gk>

|</gk>

<gk>meli kai gala</gk> 72 125-610 74 <gk>x</gk>

  <gk</gk>8</gk> om ~nit -- <gk>)Israh/l</gk> 53 <gk>

| eisakousetai</gk> 72

: <gk>eisakousontes</gk> 30

<gk>

| sou] soi 82;</gk>

post <gk>fw~s</gk> tr 426 Carl 49 <sup>Lat</sup>codd 100 101 Aug <gk>Loc in hept 11</gk> 11 Arm Syh ==

 <9M>9 <gk>

|</gk>

<gk>fwnh==s] + twn uiwn</gk> Ald

: <gk>+ legei kurios 68`-</gk>120` <gk>

| eiseleuseis</gk> 527 <gk>

| h/ gerousi)a]</gk>

<gk</sup>unaitoi</gk> Carl 49 <gk>

| )Israh/l]</gk> pr <gk>toulaoiJ</gk> 376*

:pr <gk>twn (></gk> 58) <gk>u

iwn F 58`</gk> 619 527

Arm Sa: ex <gk</sup>6;</gk> pr <gk>in</gk> <sup>Lat</sup>cod 100

: <gk>></gk> 628 76 <gk>

| faraw(] faran 58*

:ton

</gk> d <gk>n t

:> F</gk>

  <gk>M 29`-</gk>72-135-426-<gk>o/ C`` s y-392 18 59</gk> 509 Aeth Arab Bo Syh == <9M>9 <gk>

|

 basilews</gk>

246 <gk>

| kai 40 -- au/to/n]</gk> bis scr 59 <gk>

| ereite (eritai</gk> cod) Carl 49 == ML S

am Tar <gk>

|</gk>

<gk>pro/s au/to/n] ei</gk> <sup>Lat</sup>cod 101

: <gk>ad eos</gk> Armap <gk>

| o(</gk> A <it>b</it> 15` <gk>f</gk> 392 <gk>

799</gk> Bo] pr ~ Cyr <gk>Ad</gk>

233 <it>Gl</it> 5 1 6 rell == <9M>9 <gk>

| E)brai)w n] aibr.</gk> 376*

: <gk>p~r n-</gk> 707 <gk>

| p

roske/klhtai ] epikekl.</gk>

64<sup>mg</sup> <gk>

| h/ma==s] umas</gk> 1 26-55 1 <gk>*</gk> 1 06* 664 458 527 <gk>799

| poreusa~ueqa -

- h/merw==n]</gk>

post <gk>e)/rhmon</gk> tr 509 <gk>

| poreusaueqa] -someqa</gk> Bc <gk>F</gk> 376`-<gk>o/`-708 C``-

126</gk> <it>b</it> 44` <gk>f</gk> 628 <gk</sup></gk>

84-<gk>527 z</gk> 55 59 76` 130 <gk>799</gk> <sup>Lat</sup>codd 100 101 <gk>Rufx</gk> 111 3 Co

:-<gk</sup>wme</gk>

72(

|)

: <gk>po-</gk>

reuqhnai 458 Carl 49 <gk>

|</gk> om <gk>ou)==n</gk> 458 AethcR <gk>

| o)do/n]</gk> post <gk>h/merw==n

</gk> tr 619 <gk>

| triw==n</gk>

` -, - <gk>n</gk> tr <gk>C</gk> 53` 730c

:om <gk>h(merw==n</gk> 730* <gk>

| i`na qu/swmen] opws <sup>Lat</sup>

reuswmen</gk> 56tx

10 392 59 <gk>

| tois uiois 82</gk> 343* 59 <gk>

| ui)ou\s u(mw==n] [;;;;.]mwn</gk> 72

:om <gk>

uio)u/s</gk> 73* 730*

319* <gk>

| u(mw==n</gk> 10] <gk>hmwn</gk> 376 14-16*-52*-54-131

: <gk>></gk> 125 246 Arm

:^20 72

458 <gk>

|</gk>

om <gk>e)pi 20</gk> 707 126 125 <gk>

|</gk> om <gk>ta/s</gk> 53*(c prm) <gk>

|</gk> om <gk>u\mw==n</gk> 20 A

* 15`-58 <it>b</it> 130

Latcod 1 01 (sed hab Compl) <gk>

| skuleu/sete --</gk> fin] <gk>habebitis vasa aegyptior

um</gk>

Latcod 1 00 <gk>

| skuleu/sete Y] -sate</gk> B

:-<gk</sup>hte</gk> 72

: <gk</sup>uskeuasate M</gk> 426-61

 <gk>8</gk>

16-52-1 26-552 <it>b</it> <gk>d-44</gk> 458 343 370 <gk>x</gk> 527 18 55

: <gk</sup>unskeuasate</gk> (-<gk>tai>

1 30) <gk>F</gk> 30;

<gk</sup>unskeuasete Fb 29*</gk> 730

: <gk</sup>uskeuasete</gk> (aut -<gk>tai)</gk> A 1 5-29c-64`-82`-37

6

<gk>C`"-1652 126 131c 422552</gk> 44 56* 85`-127-344 <gk>t-370 y-527 z</gk> 76` 130 509 <gk>

799

:suskeu-</gk>

<gk>ashte</gk> 422(vid) 628

: <gk</sup>uskuleusete</gk> 131 c 75

: <gk>episuskeuasate</gk> 53`-246 ==

Compl;,

<gk>episuskeuasete</gk> 56c- 1 29

: <gk>aposuskeuasete 59

:praedabitis</gk> <sup>Lat</sup>codd Al ( <gk>

></gk> 91): 91

94 96

: <gk>decipietis</gk> Arab Arm Syh <gk>

| tois aiguptiois 799</gk>


//end of ch 3 file//